【Spark Summit East 2017】提升Python与Spark的性能和互操作性

简介: 本讲义出自Wes McKinney在Spark Summit East 2017上的演讲,对于使用Python编程以及并行化和扩大数据处理方面,Spark已成为一个受欢迎和成功的框架,但是在很多案例中,使用PySpark的任务处理要比使用Scala编写的效率差,而且在Python环境与Spark主机之间推拉数据也将增加开销,本次演讲将验证和分析使用一些Python库进行序列化以及互操作性问题。

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps


本讲义出自Wes McKinney在Spark Summit East 2017上的演讲,对于使用Python编程以及并行化和扩大数据处理方面,Spark已成为一个受欢迎和成功的框架,但是在很多案例中,使用PySpark的任务处理要比使用Scala编写的效率差,而且在Python环境与Spark主机之间推拉数据也将增加开销,本次演讲将验证和分析使用一些Python库进行序列化以及互操作性问题。


2ef4c1e8ce2bb431cfdc5dc300690be7d08ee391

6533f522e0f9700fd924f4711d9622f3501535a3

e1e7076e2e5190deb1c9e56a34e0af8c5c5b07b4

b16581bd582d96e0e14bc0f65539857c05bb0619

bcf013b9efbf603d289c42468ce7d83059cfe0e7

8e02d0b8c50fa22ea8ee3f6f1ba34b2aad474d55

f07905ac52e7bd8460c45d9366d63d94b299e029

842348e22688651e1dac5956ba758904720935f5

699df25845bef4329a898b3763c36eef2fe9a358

2ac5fb6c83a1d2182f4658b414c61271338cdcf3

459048e56b07d15e0c4cbbbc8c6c07e9790c8d14

c7b2f3574b50898a88090f7dcaad9e86f02c28df

e98732d6a684101c2b3d087118cf7e3155edb497

ae58a3ee7cd8f6da3d48dc46dcf7ade37d6b607c

6ffcc0d46ab3c167d876c82b1e12f4d2f676e0ff

0806d2e97d4f639358ccb19e8b2ce17d8d942a67

625894bb69b9645cd464f8231f7165cdd1e7afc7

23c53ca3f2a34ec001e6aeb0533d09068ffefe35

43f8f037cca2b8c6fa10fff7c29e07e2a86e5bd3

053902ef224bfb71529a3a255b4eb947f84a9d0d

bb372e5d79374a00c002c4428e897fa98e041882

a4a60685b7e52ee9400c3f09760d3418b8b487aa

faf78cb01b67e37c6b945f6c359cc7049569500f

280ee5a1bec14d751a66fecbfc255b105e4e2dd9

209cfccffac1191241a725423e72cef40c0b1314

31f3aa7af8a303a968346db659574c591f21d3bb

5ac6d840cad5cd6679bfa79423ed80a493fc362a

2a1c30a9473a0e5b836b519722c6ced79e733c14

47093f312d1264c193a1aa2250c6d6a13f7d567e

167404278a675d3e2af484a3cd412448e117fbde

92a3b7370a977c61a244011229f7d300f40ce1a7

3b8f48a46f5e6b509f86dc18d8b7a56d0fd20445

bf025b712b16dd6e2ddcb737f0e3202700d29664

4cb059376ea6055bbef68696feae4b9fd0c7a71b

849384822a606833f9f72c389f39840c3d815b00

d065055a4f0c20ac02550396ebbaf4237586df2b

9f942e2cce5732e5e71d4ea3772c5ae563a056fd

相关文章
|
2月前
|
测试技术 数据库 UED
Python 性能测试进阶之路:JMeter 与 Locust 的强强联合,解锁性能极限
【9月更文挑战第9天】在数字化时代,确保软件系统在高并发场景下的稳定性至关重要。Python 为此提供了丰富的性能测试工具,如 JMeter 和 Locust。JMeter 可模拟复杂请求场景,而 Locust 则能更灵活地模拟真实用户行为。结合两者优势,可全面评估系统性能并优化瓶颈。例如,在电商网站促销期间,通过 JMeter 模拟大量登录请求并用 Locust 模拟用户浏览和购物行为,可有效识别并解决性能问题,从而提升系统稳定性和用户体验。这种组合为性能测试开辟了新道路,助力应对复杂挑战。
103 2
|
25天前
|
测试技术 持续交付 Apache
性能怪兽来袭!Python+JMeter+Locust,让你的应用性能飙升🦖
【10月更文挑战第10天】随着互联网应用规模的不断扩大,性能测试变得至关重要。本文将探讨如何利用Python结合Apache JMeter和Locust,构建高效且可定制的性能测试框架。通过介绍JMeter和Locust的使用方法及Python的集成技巧,帮助应用在高负载下保持稳定运行。
62 2
|
25天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
47 1
|
30天前
|
存储 数据处理 Python
深入解析Python中的生成器:效率与性能的双重提升
生成器不仅是Python中的一个高级特性,它们是构建高效、内存友好型应用程序的基石。本文将深入探讨生成器的内部机制,揭示它们如何通过惰性计算和迭代器协议提高数据处理的效率。
|
1月前
|
缓存 并行计算 算法
如何提高 Python 高阶函数的性能?
【10月更文挑战第2天】
14 3
|
1月前
|
测试技术 持续交付 Apache
性能怪兽来袭!Python+JMeter+Locust,让你的应用性能飙升🦖
【10月更文挑战第2天】随着互联网应用规模的不断膨胀,性能测试变得至关重要。本文将介绍如何利用Python结合Apache JMeter和Locust构建高效且可定制的性能测试框架。Apache JMeter是一款广泛使用的开源负载测试工具,适合测试静态和动态资源;Locust则基于Python,通过编写简单的脚本模拟HTTP请求,更适合复杂的测试场景。
58 3
|
1月前
|
安全 数据安全/隐私保护 UED
优化用户体验:前后端分离架构下Python WebSocket实时通信的性能考量
在当今互联网技术的迅猛发展中,前后端分离架构已然成为主流趋势,它不仅提升了开发效率,也优化了用户体验。然而,在这种架构模式下,如何实现高效的实时通信,特别是利用WebSocket协议,成为了提升用户体验的关键。本文将探讨在前后端分离架构中,使用Python进行WebSocket实时通信时的性能考量,以及与传统轮询方式的比较。
60 2
|
2月前
|
测试技术 API Python
Python中requests、aiohttp、httpx性能对比
这篇文章对比了Python中三个流行的HTTP客户端库:requests、aiohttp和httpx,在发送HTTP请求时的性能,并提供了测试代码和结果,以帮助选择适合不同应用场景的库。
127 2
|
28天前
|
数据处理 Python
如何优化Python读取大文件的内存占用与性能
如何优化Python读取大文件的内存占用与性能
93 0
|
2月前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
63 3