Python爬虫入门教程 38-100 教育部高校名单数据爬虫 scrapy

简介: 爬前叨叨今天要爬取一下正规大学名单,这些名单是教育部公布具有招生资格的高校名单,除了这些学校以外,其他招生的单位,其所招学生的学籍、发放的毕业证书国家均不予承认,也就是俗称的野鸡大学!网址是 https://daxue.

爬前叨叨

今天要爬取一下正规大学名单,这些名单是教育部公布具有招生资格的高校名单,除了这些学校以外,其他招生的单位,其所招学生的学籍、发放的毕业证书国家均不予承认,也就是俗称的野鸡大学

image

网址是 https://daxue.eol.cn/mingdan.shtml 爬取完毕之后,我们进行一些基本的数据分析,套路如此类似,哈哈

这个小项目采用的是scrapy,关键代码

import scrapy
from scrapy import Request,Selector

class SchoolSpider(scrapy.Spider):
    name = 'School'
    allowed_domains = ['daxue.eol.cn']
    start_urls = ['https://daxue.eol.cn/mingdan.shtml']

    def parse(self, response):
        select = Selector(response)
        links = select.css(".province>a")
        
        for item in links:
            name = item.css("::text").extract_first()
            link = item.css("::attr(href)").extract_first()

            if name in ["河南","山东"]:
                yield Request(link,callback=self.parse_he_shan,meta={"name" : name})
            else:
                yield Request(link,callback=self.parse_school,meta={"name" : name})

注意到几个问题,第一个所有的页面都可以通过第一步抓取到
image

但是里面出现了两个特殊页面,也就是山东和河南

北京等学校

image

河南等学校
image

对于两种不同的排版,我们采用2个方法处理,细节的地方看代码就可以啦!
尤其是下面对字符串的处理,你要仔细的查阅~

    # 专门为河南和山东编写的提取方法
    def parse_he_shan(self,response):
        name = response.meta["name"]
        data = response.css(".table-x tr")
        for item in data:
            school_name = item.css("td:not(.tmax)::text").extract()

            if len(school_name)>0:
                for s in school_name:
                    if len(s.strip())>0:
                        if len(s.split("."))==1:
                            last_name = s.split(".")[0]
                        else:
                            last_name = s.split(".")[1]  # 最终获取到的名字
                        yield {
                            "city_name": name,
                            "school_name": last_name,
                            "code": "",
                            "department": "",
                            "location": "",
                            "subject": "",
                            "private": ""
                        }

    # 通用学校提取
    def parse_school(self,response):
        name = response.meta["name"]

        schools = response.css(".table-x tr")[2:]

        for item in schools:

            school_name = item.css("td:nth-child(2)::text").extract_first()
            code =  item.css("td:nth-child(3)::text").extract_first()
            department = item.css("td:nth-child(4)::text").extract_first()
            location = item.css("td:nth-child(5)::text").extract_first()
            subject = item.css("td:nth-child(6)::text").extract_first()
            private = item.css("td:nth-child(7)::text").extract_first()
            yield {
                "city_name":name,
                "school_name":school_name,
                "code":code,
                "department":department,
                "location":location,
                "subject":subject,
                "private":private
            }

运行代码,跑起来,一会数据到手。O(∩_∩)O哈哈~

image

查看专科学校和本科学校数量差别

因为河南和山东数据的缺失,需要踢出这两个省份

import pymongo
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt

client = pymongo.MongoClient("localhost",27017)
schools = client["school"]
collection = schools["schools"]

df = DataFrame(list(collection.find()))

df = df[df["code"]!=""]
# 汇总本科和专业
df.groupby(["subject"]).size()

结果显示,数量基本平衡

subject
专科    1240
本科    1121
dtype: int64

查看各省排名

rank = df.groupby(by="city_name").size()
rank = rank.sort_values(ascending=False)

# 设置中文字体和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

plt.figure(figsize=(12,8),dpi=80)
plt.subplot(1,1,1)


x = np.arange(len(rank.index))
y = rank.values
rect = plt.bar(left=x,height=y,width=0.618,label="学校数目",align="center",color="#03a9f4",edgecolor="#03a9f4",)

plt.xticks(x,rank.index,rotation=45,fontsize=9)
plt.yticks(np.arange(0,180,10))


plt.xlabel("城市")
plt.ylabel("大学数量")

plt.legend(loc = "upper right")

## 编辑文本

for r in rect:
    height = r.get_height() # 获取高度
    
    plt.text(r.get_x()+r.get_width()/2,height+1,str(height),size=6,ha="center",va="bottom")

plt.show()

好好研究这部分代码,咱已经开始慢慢的在爬虫中添加数据分析的内容了,我会尽量把一些常见的参数写的清晰一些

image

江苏和广东大学真多~

image

相关文章
|
15天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
1天前
|
数据采集 安全 定位技术
使用代理IP爬虫时数据不完整的原因探讨
在信息化时代,互联网成为生活的重要部分。使用HTTP代理爬取数据时,可能会遇到失败情况,如代理IP失效、速度慢、目标网站策略、请求频率过高、地理位置不当、网络连接问题、代理配置错误和目标网站内容变化等。解决方法包括更换代理IP、调整请求频率、检查配置及目标网站变化。
26 11
|
21天前
|
数据采集 JSON JavaScript
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
本文介绍了如何使用PHP模拟表单提交并结合代理IP技术抓取京东商品的实时名称和价格,特别是在电商大促期间的数据采集需求。通过cURL发送POST请求,设置User-Agent和Cookie,使用代理IP绕过限制,解析返回数据,展示了完整代码示例。
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
|
13天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
26天前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
41 3
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
28 1
|
26天前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
70 0
|
27天前
|
数据采集 存储 分布式计算
超酷炫Python技术:交通数据的多维度分析
超酷炫Python技术:交通数据的多维度分析
|
1月前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
34 0
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
98 6