超维计算让AI有记忆和反应,还能解决自动驾驶难题

简介: 这可以打破我们与自动驾驶汽车和其他机器人之间的僵局,这也将促使更像人类AI模型的出现。

马里兰大学的一个研究团队最近提出了超维计算理论(hyperdimensional computing theory),能够让机器人拥有记忆和反应。这可以打破我们与自动驾驶汽车和其他机器人之间的僵局,这也将促使更像人类AI模型的出现。 

TB14VrVXBGw3KVjSZFwXXbQ2FXa.jpg

解决方案

马里兰州团队提出了一种理论方法——超维计算,一种超线程的替代方式,基于布尔值和数字计算,可以取代当前用于处理感官信息的深度学习方法。

根据团队成员之一也是论文作者的博士生Anton Mitrokhin的说法,这很重要,因为要让AI像人类一样面临着处理的瓶颈:

基于神经网络的AI方法既庞大又缓慢,因为这种方法无法记忆。我们的超维理论方法可以产生记忆,这将大幅减少计算需求,并且使任务可以更快和更有效地完成。

记忆是当前人工智能所不具备的,但这对于预测未来的任务非常重要。想象一下,在打网球的时候,每次击球时你都不在头脑中计算,而只是跑过来,然后打它。你感知到球并采取行动,没有借助其他东西将真实世界的数据转化为数字数据然后进行处理。这种在没有过滤器的情况下将感知转化为行动的能力是人类在现实世界中固有的能力。

问题

2016年5月,特斯拉汽车在开启自动驾驶辅助系统的情况下,未能“看到”卡车的白色拖车,特斯拉汽车以高速公路的速度撞向它。最近又发生了同样的事情。不同型号特斯拉汽车,不同版本的自动驾驶系统,但结果是同样的,这是为什么?

虽然埃隆马斯克应该承担一些责任,人为错误也需要对此负责,但事实仍然是深度学习会让自动驾驶汽车变得糟糕,并且没有太大的希望让它会变得更好。

 

TB1i6rQXBSD3KVjSZFqXXc4bpXa.png

其原因很复杂,但可以很容易地解释。AI不知道汽车、人、拖车或热狗的样子。很容易发现,一个深学习型AI模型可以通过一百万张的图片进行训练让这个模型对热狗图片识别的精确度达到99.9%,但它永远不会知道真正看起来像是什么样。

未来

超维计算理论为AI提供了真正“看到”世界并做出自己推论的能力。通过对每个可感知的对象和变量进行数学运算,超矢量可以在机器人中实现“主动感知”,而不是试图通过强制处理整个宇宙。

据论文的主要作者 Yiannis Aloimonos所说:

主动感知者知道为什么要感知,然后选择要感知的内容,并确定感知的方式,包括何时以及在何处实现感知。它选择并专注于场景、时刻和情节。然后,它将其机制,传感器和其他组件,以根据它想要查看的内容进行操作,并选择最佳捕获其意图的视点。我们的超维框架可以解决每个问题。

虽然机器人的超维计算操作系统的创建和实现仍然是理论上的,但这些想法为研究提供了一条前进的道路,可以为无人驾驶汽车AI提供解决当前需要解决问题的方法。

此外,这个理论不仅仅是机器人技术。研究人员的最终目标是用更快、更有效的基于超维计算的替换神经网络模型取代迭代神经网络模型。这可能会导致一种没有进展的线下,它接近于开发新的机器学习模型。

我们可能更接近于实现一个能够在不熟悉的环境中学习执行新任务的机器人 - 比如“Jetsons”中的Rosie The Robot - 比大多数专家都认为的更好。当然,像这样的技术也可能带来其他问题......不那么卡通化的产品:雷锋网

TB1HkYYXqWs3KVjSZFxXXaWUXXa.png

雷锋网编译,via thenextweb 雷锋网(公众号:雷锋网)

目录
相关文章
|
2月前
|
存储 人工智能 弹性计算
AI计算加速渗透、基础设施全面升级…云栖大会重磅发布全览
阿里云全面展示了全新升级后的AI Infra系列产品及能力。通过全栈优化,阿里云打造出一套稳定和高效的AI基础设施,连续训练有效时长大于99%,模型算力利用率提升20%以上。
225 27
|
1月前
|
机器学习/深度学习 存储 人工智能
AI与量子计算:推动计算科学的边界
【10月更文挑战第7天】AI与量子计算的融合,标志着计算科学进入了一个全新的时代。在这个时代里,计算能力的边界被不断拓宽,科技创新的速度不断加快。我们有理由相信,在未来的日子里,AI与量子计算将继续携手并进,共同推动计算科学向着更加智能、更加高效的方向发展。让我们期待这一天的到来,共同见证计算科学的无限可能。
|
3月前
|
存储 人工智能
|
4月前
|
人工智能
[AI Mem0] 快速开始:智能记忆管理,让你的数据活起来!
[AI Mem0] 快速开始:智能记忆管理,让你的数据活起来!
|
5天前
|
传感器 机器学习/深度学习 人工智能
自动驾驶汽车中的AI:从概念到现实
【10月更文挑战第31天】自动驾驶汽车曾是科幻概念,如今正逐步成为现实。本文探讨了自动驾驶汽车的发展历程,从早期的机械控制到现代的AI技术应用,包括传感器融合、计算机视觉、路径规划和决策控制等方面。尽管面临安全性和法规挑战,自动驾驶汽车在商用运输、公共交通和乘用车领域展现出巨大潜力,未来将为人类带来更安全、便捷、环保的出行方式。
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
探索操作系统的未来:量子计算与AI的融合
【7月更文挑战第4天】在数字化时代,操作系统作为连接用户与硬件的桥梁,其发展直接影响着计算机科学的进步。随着量子计算和人工智能技术的兴起,传统操作系统面临着前所未有的挑战和机遇。本文将探讨量子计算与AI技术如何推动操作系统的进化,以及这一进程对软件架构、安全性和性能优化等方面的影响。通过分析当前技术趋势和未来展望,文章旨在为读者提供一个关于操作系统未来发展的全面视角。
|
4月前
|
人工智能 自然语言处理 搜索推荐
[AI Mem0 Platform] 快速开始,为您的AI应用注入长期记忆和个性化能力!
[AI Mem0 Platform] 快速开始,为您的AI应用注入长期记忆和个性化能力!
|
14天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
37 2
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
41 2
|
1月前
|
人工智能 自动驾驶 机器人
【通义】AI视界|苹果自动驾驶汽车项目画上句号:加州测试许可被取消
本文精选了24小时内的重要科技新闻,包括Waymo前CEO批评马斯克对自动驾驶的态度、AMD发布新款AI芯片但股价波动、苹果造车项目终止、Familia.AI推出家庭应用以及AI逆向绘画技术的进展。更多内容请访问通义官网体验。

热门文章

最新文章

下一篇
无影云桌面