BI和数据仓库:企业分析决策真的离不开数据仓库吗?

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 数据分析和商业决策发展至今,企业想要实现数据驱动决策,是否还是无法绕过数据仓库?在现代商业环境中重新定义BI和数据仓库,我们又能不能找到合适的替代方案?

很长一段时间,BI和数据仓库几乎都是如影随形、难舍难分。企业如果想要实行“数据驱动决策-决策推动业务发展”的机制,就必须先有数据仓库充当中央存储库,供BI查询和调取,然后再在BI上进行数据的分析与可视化。

但数据分析和商业决策发展至今,企业想要实现数据驱动决策,是否还是无法绕过数据仓库?在现代商业环境中重新定义BI和数据仓库,我们又能不能找到合适的替代方案?

今天,我们就这个命题展开讨论,希望能给大家提供一些思路。

数仓:BI背后的引擎(或管道)

数据仓库:从字面意义上即数据的仓库,是为了把操作型数据集成到统一的环境中,以提供决策型数据访问。数据仓库关注的是解决数据一致性,可信性,集合性.......这些问题,把越来越复杂的业务数据转化成对于业务运营、业务分析来说简单易用的数据形式;数据仓库的终极目标是让数据应用人员(无论是CEO还是普通分析师)思考怎么使用数据仓库里的这些数据,创造更多的信息与价值;而不是发愁数据在哪里,数据对不对。

BI(商业智能):BI是分析数据并获取洞察力、从而帮助企业做出决策的一系列方法、技术和软件。相比数据仓库,BI中还包含了数据挖掘,数据可视化,多维分析,标签分类等方面。拿多维分析举个例子,数据仓库中只是提供了维度化的数据,但是基于某些工具,比如Ebay的kylen或者IBM的Cognos等,可以支持用户在一定范围内任意组合维度与指标,那这就上升到了决策支持的层面而不是“高级数据仓储”层面了,也就是使用了数据仓库的数据,但不是数据仓库的功能。

1

BI与数据仓库的相关性(图片来源于网络)

传统BI项目的构建路径决定了其必须依赖数据仓库才能进行数据分析。比如MicroStrategy,SAP BW,微软 Analysis Server, IBM的Cognos,Oracle的OBIEE,这些传统BI工具不具备使数据集成标准化的能力,数据仓库的存在就是帮助他们建立数据治理结构,解决数据冗余、不一致、错误、无法轻松访问等问题。

另一方面,BI对数据仓库的这种依赖其实存在着极大的缺陷。一般来说,数据仓库通常需要花费高经济成本、时间成本从规划到落地,但创造的价值大多数情况比较有限,ROI较低。搭建成功后,数据仓库也仅支持极少数特定类型的分析,如果企业业务出现调整或者需要处理新类型的数据,届时又将重新面临重大的开发工作。

从现代商业决策视角,重新审视BI与数据仓库的关系

在如今转向服务导向架构(SOA)(*由Gartner提出,以“服务”为基本元素来组建企业IT架构的方式。SOA要解决的主要问题是:快速构建与应用集成,现已成为解决企业业务发展需求与企业IT支持能力之间矛盾的最佳方案。)的技术大背景中,耗费巨大心力进行大规模的数据整合和数据集成操作是否还有必要?构建数仓的收益是否能大于你将付出的成本?

再加上企业数据体量不断提升,业务发展越来越迅速,对快速印证分析决策也提出了更高要求,更多的企业希望能够降低技术设施成本,做到近乎实时地访问操作源数据,在极短的时间内响应用户请求。

2

数据仓库和BI的体系结构(图片来源于网络)

于是我们看到了越来越多没有数仓的BI项目。一方面,敏捷BI的兴起,允许用户快速接入各类数据源,无需借助数仓即可实现数据导入-处理-分析的流程。而另一方面,新一代AI+BI智能数据分析平台,则在快速接入、敏捷分析的基础上,实现了更进一步的应用:

  1. 自带轻量的分布式数据存储与数据流处理模块,提供从数据抽取、数据建模、数据分析,到数据可视化、预警分发的一站式数据分析应用能力;
  2. 即便不抽取数据,也可实现多数据源的联邦动态分析(联动、钻取、动态参数等交互分析功能)。

在这个角度上来看,一定程度上可以在没有数据仓库的前提下实现智能数据分析,但是,这仅限于数据量有限的中小型企业,不意味着我们推荐直接拿数据分析平台上的数据存储当做数据仓库来用。

因为随着企业用户数据量、分析复杂度的不断提升,数据分析平台上轻量式数据存储与数据流处理模块是难以承受巨大的计算压力的,从企业长远发展的角度上考量,还是需要有计划地建设数据仓库或数据平台。

企业构建分析决策架构的敏捷策略

企业分析决策架构的未来前景,取决于业务驱动因素以及技术的发展方向。如今企业数据呈指数级增长,对实时分析的需求比以往任何时候都要强烈,鉴于此,如何兼顾快速落地与高可扩展性,有机结合数据仓库来构建企业分析决策架构,仍是摆在众多企业面前的一个巨大难题。

对此,我们推荐的最佳实践是:

  1. 在数仓尚未搭建或分析思路尚未成型时,直接在BI平台内快速构建分析应用,快速反馈、快速迭代,实现quick win。
  2. 在分析结果得到业务的印证后,再将数据沉淀和复杂分析逻辑逐步固化到数据仓库或数据平台里面实施,此时BI平台仅担负轻量的数据分析与可视化压力。

我们认为,数据分析的本质是为业务发展、商业决策而服务,而不是创建一堆无用的可视化图表。通过以上提到的这种敏捷开发,快速印证,不断沉淀的过程,将能够更大程度上确保企业分析决策架构的方向正确,获得业务端的认同,驱动业务发展,从而产生真正的商业价值。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
7月前
|
BI
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
246 0
|
7月前
|
数据采集 数据可视化 数据挖掘
数据分析案例-BI工程师招聘岗位信息可视化分析
数据分析案例-BI工程师招聘岗位信息可视化分析
145 0
|
2月前
|
SQL 缓存 分布式计算
阿里云连续五年入选Gartner®分析和商业智能平台魔力象限,中国唯一
Gartner® 正式发布《分析与商业智能平台魔力象限》报告(Magic Quadrant™ for Analytics and Business Intelligence Platforms),阿里云成为唯一入围该报告的中国厂商,被评为“挑战者”(Challengers)。这也是阿里云连续五年入选该报告。
|
4月前
|
存储 数据管理 BI
揭秘数据仓库的奥秘:数据究竟如何层层蜕变,成为企业决策的智慧源泉?
【8月更文挑战第26天】数据仓库是企业管理数据的关键部分,其架构直接影响数据效能。通过分层管理海量数据,提高处理灵活性及数据一致性和安全性。主要包括:数据源层(原始数据)、ETL层(数据清洗与转换)、数据仓库层(核心存储与管理)及数据服务层(提供分析服务)。各层协同工作,支持高效数据管理。未来,随着技术和业务需求的变化,数仓架构将持续优化。
84 3
|
24天前
|
机器学习/深度学习 算法 数据挖掘
如何利用 BI 工具分析客户流失原因?
如何利用 BI 工具分析客户流失原因?
46 10
|
1月前
|
数据采集 数据可视化 数据挖掘
数据驱动决策:BI工具在数据分析和业务洞察中的应用
【10月更文挑战第28天】在信息爆炸的时代,数据成为企业决策的重要依据。本文综述了商业智能(BI)工具在数据分析和业务洞察中的应用,介绍了数据整合、清洗、可视化及报告生成等功能,并结合实际案例探讨了其价值。BI工具如Tableau、Power BI、QlikView等,通过高效的数据处理和分析,助力企业提升竞争力。
53 5
|
1月前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
7月前
|
存储 机器学习/深度学习 数据采集
【专栏】在数字化时代,数据仓库和数据湖成为企业管理数据的关键工具
【4月更文挑战第27天】在数字化时代,数据仓库和数据湖成为企业管理数据的关键工具。数据仓库是经过规范化处理的结构化数据集合,适合支持已知业务需求;而数据湖存储原始多类型数据,提供数据分析灵活性。数据仓库常用于企业决策、财务分析,而数据湖适用于大数据分析、机器学习和物联网数据处理。企业需根据自身需求选择合适的数据存储方式,以挖掘数据价值并提升竞争力。理解两者异同对企业的数字化转型至关重要。
138 2
|
4月前
|
消息中间件 存储 大数据
大数据-数据仓库-实时数仓架构分析
大数据-数据仓库-实时数仓架构分析
153 1
|
4月前
|
Java Spring 监控
Spring Boot Actuator:守护你的应用心跳,让监控变得触手可及!
【8月更文挑战第31天】Spring Boot Actuator 是 Spring Boot 框架的核心模块之一,提供了生产就绪的特性,用于监控和管理 Spring Boot 应用程序。通过 Actuator,开发者可以轻松访问应用内部状态、执行健康检查、收集度量指标等。启用 Actuator 需在 `pom.xml` 中添加 `spring-boot-starter-actuator` 依赖,并通过配置文件调整端点暴露和安全性。Actuator 还支持与外部监控工具(如 Prometheus)集成,实现全面的应用性能监控。正确配置 Actuator 可显著提升应用的稳定性和安全性。
154 0

热门文章

最新文章