Python爬虫入门教程 28-100 虎嗅网文章数据抓取 pyspider

简介: 1. 虎嗅网文章数据----写在前面今天继续使用pyspider爬取数据,很不幸,虎嗅资讯网被我选中了,网址为 https://www.huxiu.com/ 爬的就是它的资讯频道,本文章仅供学习交流使用,切勿用作其他用途。

1. 虎嗅网文章数据----写在前面

今天继续使用pyspider爬取数据,很不幸,虎嗅资讯网被我选中了,网址为 https://www.huxiu.com/ 爬的就是它的资讯频道,本文章仅供学习交流使用,切勿用作其他用途。

常规操作,分析待爬取的页面

拖拽页面到最底部,会发现一个加载更多按钮,点击之后,抓取一下请求,得到如下地址

image

2. 虎嗅网文章数据----分析请求

查阅该请求的方式和地址,包括参数,如下图所示
image

得到以下信息

  1. 页面请求地址
  2. 请求方式:POST
  3. 请求参数比较重要的是一个叫做page的参数

我们只需要按照上面的内容,把pyspider代码部分编写完毕即可。
on_start 函数内部编写循环事件,注意到有个数字2025这个数字,是我从刚才那个请求中看到的总页数。你看到这篇文章的时候,这个数字应该变的更大了。

    @every(minutes=24 * 60)
    def on_start(self):
        for page in range(1,2025):
            print("正在爬取第 {} 页".format(page))
            self.crawl('https://www.huxiu.com/v2_action/article_list', method="POST",data={"page":page},callback=self.parse_page,validate_cert=False)

页面生成完毕之后,开始调用parse_page 函数,用来解析 crawl() 方法爬取 URL 成功后返回的 Response 响应。

    @config(age=10 * 24 * 60 * 60)
    def parse_page(self, response):
        content = response.json["data"]
        doc = pq(content)
        lis = doc('.mod-art').items()
        data = [{
           'title': item('.msubstr-row2').text(),
           'url':'https://www.huxiu.com'+ str(item('.msubstr-row2').attr('href')),
           'name': item('.author-name').text(),
           'write_time':item('.time').text(),
           'comment':item('.icon-cmt+ em').text(),
           'favorites':item('.icon-fvr+ em').text(),
           'abstract':item('.mob-sub').text()
           } for item in lis ] 
        return data

最后,定义一个 on_result() 方法,该方法专门用来获取 return 的结果数据。这里用来接收上面 parse_page() 返回的 data 数据,在该方法可以将数据保存到 MongoDB 中。

  # 页面每次返回的数据            
    def on_result(self,result):
        if result:
            self.save_to_mongo(result)            
    
  
    # 存储到mongo数据库
    def save_to_mongo(self,result):
        df = pd.DataFrame(result)  
        content = json.loads(df.T.to_json()).values()
        if collection.insert_many(content):
            print('存储数据成功')
            # 暂停1s
            time.sleep(1)

好的,保存代码,修改每秒运行次数和并发数

image

点击run将代码跑起来,不过当跑起来之后,就会发现抓取一个页面之后程序就停止了, pyspider 以 URL的 MD5 值作为 唯一 ID 编号,ID 编号相同,就视为同一个任务, 不会再重复爬取。

GET 请求的分页URL 一般不同,所以 ID 编号会不同,能够爬取多页。
POST 请求的URL是相同的,爬取第一页之后,后面的页数便不会再爬取。

解决办法,需要重新写下 ID 编号的生成方式,在 on_start() 方法前面添加下面代码即可:

    def get_taskid(self,task):
        return md5string(task['url']+json.dumps(task['fetch'].get('data','')))

基本操作之后,文章入库

image

相关文章
|
1月前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
12天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
44 3
|
23天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
24天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
1月前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
1月前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
2月前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
数据采集 JavaScript 前端开发
Python爬虫能处理动态加载的内容吗?
Python爬虫可处理动态加载内容,主要方法包括:使用Selenium模拟浏览器行为;分析网络请求,直接请求API获取数据;利用Pyppeteer控制无头Chrome。这些方法各有优势,适用于不同场景。

热门文章

最新文章