重磅!阿里云时空数据库正式免费公测

简介: 目前随着移动互联网和物联网的广泛应用,90%以上的数据是和时间+空间相关的,而越来越多的数据应用场景与时间和空间信息密不可分。时间+空间维度的数据(我们称之为时空数据)是一种高维数据,需要更为高效的数据处理方式来处理,而普通的关系型数据库更适合于存储数值和字符类型数据,也缺少相关的时空算子。

目前随着移动互联网和物联网的广泛应用,90%以上的数据是和时间+空间相关的,而越来越多的数据应用场景与时间和空间信息密不可分。时间+空间维度的数据(我们称之为时空数据)是一种高维数据,需要更为高效的数据处理方式来处理,而普通的关系型数据库更适合于存储数值和字符类型数据,也缺少相关的时空算子。在实际应用场景上例如传感器网络、移动互联网、射频识别、全球定位系统等设备时刻输出时间和空间数据,数据量增长非常迅速,这对存储和管理时空数据带来了挑战,传统数据库很难应对以上场景。阿里云时空数据库能够存储、管理包括时间序列以及空间地理位置相关的数据,时空数据库具有时空数据模型、时空索引和时空算子,完全兼容SQL及SQL/MM标准,支持时空数据同业务数据一体化存储、无缝衔接,易于集成使用。

5月5日,阿里云时空数据库正式开始免费公测,公测期间我们提供了2core4g+100G云盘的版本供客户免费试用。
产品使用手册:https://help.aliyun.com/document_detail/116088.html?spm=a2c4g.11174283.6.727.1b22130eu4OBeh
公测免费试用页面:https://common-buy.aliyun.com/?commodityCode=hitsdb_spatialpre#/buy
注意:需要用户先免费创建自己的VPC环境才能试用,详情参见下图,VPC创建也是完全免费的
vpc_

产品优势

易用(标准SQL接口)

    SQL是目前最通用的数据库访问语言,时空数据库基于标准PostgreSQL,支持JDBC/ODBC驱动访问。时空数据同其它业务数据一体化处理,兼容OGC空间计算函数;支持符合OGC规范的WKT和WKB格式数据输入和输出。

写入性能强劲

      时空数据,插入是一个强需求,往往有大量设备上报轨迹、指标数据,因此对插入性能要求较高。阿里云时空数据库,单机不同规格下可以支持到数万到数十万的TPS写入。

高效分析能力

      时空数据,除单条的查询、POI查询,更多的是其他的分析类需求。这对时空数据库的分析能力也是一个挑战。阿里云时空支持查询条件自动选择分区,高效空间索引,并行的聚合操作等提升分析性能。

自动扩展分区

       业务对时空数据查询,往往都会对时间区间进行过滤,因此时空数据通常在分区时,会有一个时间或空间分区的概念。时空数据库支持自动扩展分区,减少用户的管理量,不需要人为的干预自动扩展分区。

功能丰富

具有丰富的时间和空间处理查询函数;支持点(POINT)、线(LINESTRING)、多边形(POLYGON)、多点(MULTIPOINT)、多线(MULTILINESTRING)、多多边形(MULTIPOLYGON)和几何对象集(GEOMETRYCOLLECTION)等几何类型存储。

自动保留策略

   根据用户配置,自动删除过旧数据,极大降低用户使用成本,减少用户管理工作。

自动Failover

     阿里云时空数据库提供全自动Failover机制,一旦所在硬件发生不可恢复的故障,会在非常短的时间内使用其他硬件替换故障硬件。这样可以减少因为不可控故障引发的服务中断时间。该Failover是全自动的,无需人工干预,用户也无需担心服务由于硬件故障造成的长时间不可用。

高可靠

时空数据库是一种高性能时空数据库,底层存储建立在阿里云高效云盘基础之上,高效云盘提供99.9999999%数据高可靠保障。可以保障时空数据库数据一旦写入,基本不会丢失。

生态

阿里云时空数据库在生态上非常易于同多种主流产品集成,比如地图引擎(如GeoServer和MapServer)、地图编辑系统(如QGIS和ArcGIS for Desktop)、数据分析与可视化产品(如Grafana、Zeppelin和Jupyter)、大数据分析平台(Spark),满足模块化集成需求,为时空数据管理提供有力支撑。

数据写入&查询

时空数据库写入和查询非常便利,读写采用标准SQL,用户可以通过JDBC/ODBC驱动操作数据库,进行读写操作。
用户也可以通过psql交互式终端向时空数据库写入数据,下面是几个简单的例子:

INSERT INTO tsdb_test VALUES (1001, '2019-03-11 16:34:15', 1002.2, 
ST_SetSRID(ST_MakePoint(10.3,20.1),4326)

用户通过交互终端查询数据,可以如下:

SELECT time,uid,speed,dev_type,ST_AsText(position) FROM metrics 
WHERE time >'2017-01-01 01:02:00' AND time < '2017-01-01 01:11:02' AND 
ST_Contains(ST_SetSRID(ST_MakeBox2D(ST_Point(12.4, 25.5),ST_Point(13.0,26.1)),4326),position);

关于时空数据库的具体用法,可以参考阿里云时空数据库文档:开发指南

场景

地图服务

地图服务是一种非常广泛的应用,便于各类业务数据空间化、空间分析和可视化。这个场景介绍如何使用时空数据库搭建地图服务,并给出架构参考。

方案架构

11


时空数据库作为存储空间数据(如车辆定位数据)与空间查询引擎,提供后端支持。GeoServer(GeoServer是一款知名的开源地图服务引擎,支持OGC WFS、WMS、WPS等协议,易于部署,有大量的用户)作为地图服务引擎用于空间数据渲染和地图发布,前端客户端采用Leaflet或openlayers框架,同时支持PC/Android/iOS多种类型终端。地图发布的主要流程包括三步:第一步在时空数据库中导入业务数据后;第二步通过GeoServer关联数据库;第三步选择需要发布的图层,并对图层设定相应对式样。


人员监护

人员监护应用适用对儿童和老人监护,方便实时查看活动轨迹、健康指标(体温、血压、心跳等);并设定电子围栏(特定区域,比如学校、小区、公园等),当活动人员离开特定区域时触发告警信息。

方案架构

12



时空数据库存储时空和指标数据,并提供空间查询功能,提供后端支持。GeoServer作为地图服务引擎用于空间数据渲染和地图发布,前端客户端采用Leaflet或openlayers框架。电子围栏服务用于判断移动目标同电子围栏的空间关系,并触发告警信息。


车辆监控

车辆监控应用适用于查看车辆当前和历史轨迹,对车辆的行驶区域做限定,当脱离特定路线后能够报警;并对车辆传感器获取一些参数(比如车速、胎压、电池电压等)做实时监测。

方案架构

13

时空数据库作为存储轨迹及监测指标,提供空间及指标查询功能,提供后端支持。GeoServer作为地图服务引擎用于空间数据渲染、地图发布、时空数据入库,前端客户端采用Leaflet或openlayers框架。电子围栏服务用于判断移动目标同电子围栏的空间关系,并触发告警信息。电子围栏在这里起到过滤器,再地图服务器的WFS服务写入定位和传感器监测数据。


物流配送

物流配送应用适合于物流行业,提供导航规划功能,并对物流过程做全程监控。

方案架构

15

时空数据库作为存储与路径规划引擎,提供后端支持。GeoServer作为地图服务引擎用于空间数据渲染、地图发布、时空数据入库,前端客户端采用Leaflet或openlayers框架。在时空数据库存储路网数据,路网数据是做导航规划的基础;在客户端选择起始点和目的地后,由时空数据库计算最佳导航路线,经客户端确认后把导航路线推送给物流终端。时空数据库充当两个角色:轨迹数据存储和导航路径计算。从物流终端获取的轨迹数据通过地图服务器WFS服务存入时空数据库。


轨迹分析

轨迹分析用于计算轨迹之间的关系以及轨迹与专题地图之间的关系;轨迹分析可以用于分析道路拥堵时空特征、人员活动热点区域、异常行驶车辆等,适用业务场景非常广,比如可以用于商业选址、交通优化、公共安全等。

方案架构

14

地图服务器(GeoServer)接收轨迹输入,轨迹和其它监测数据存入时空数据库;轨迹关联计算用于轨迹聚合计算,识别轨迹之间的关系(如轨迹聚类)和轨迹与地图之间的关系(如以道路作为专题图,车辆轨迹的密集程度反应道路的拥堵情况)。轨迹关联计算涉及大量的时空查询需要利用时空数据库做加速处理。

总结

      时空数据库通过融合时序和空间数据模型,来满足不同时空数据场景的要求,更贴近业务;提供多元化索引(空间索引和时序索引等)来满足不同类型场景条件查询需求;提供自动分片及自动删除过旧数据策略,来降低用户管理成本,提升便利性。同时还在稳定性、可靠性、运维上提供优化服务,让用户能够在融合的PostgreSQL生态下,更专注于自己的业务。

公测免费试用页面:https://common-buy.aliyun.com/?commodityCode=hitsdb_spatialpre#/buy
产品使用手册:https://help.aliyun.com/document_detail/116088.html?spm=a2c4g.11174283.6.727.1b22130eu4OBeh

欢迎加入阿里数据库产品钉钉群,一起交流。

阿里数据库技术交流群(1000人+大群)入群方式:
一:搜索钉群号即可入群:23124548
二:扫描下方二维码进群:
阿里数据库技术交流群
_

目录
相关文章
|
3月前
|
安全 OLAP 数据库
拒绝等待!阿里云瑶池数据库 x Qwen3,构建增强式RAG
阿里云瑶池 Dify on DMS + AnalyticDB 现已支持通义千问 Qwen3 全系列模型的私域部署,并提供独占模型服务,实现高效安全的 GraphRAG 业务应用及大模型应用开发解决方案。
|
3月前
|
人工智能 运维 关系型数据库
|
2月前
|
Cloud Native 关系型数据库 分布式数据库
阿里云PolarDB与沃趣科技携手打造一体化数据库解决方案,助推国产数据库生态发展
阿里云瑶池数据库与沃趣科技将继续深化合作,共同推动国产数据库技术的持续创新与广泛应用,为行业生态的繁荣注入更强劲的技术动力。
阿里云PolarDB与沃趣科技携手打造一体化数据库解决方案,助推国产数据库生态发展
|
21天前
|
Cloud Native 关系型数据库 分布式数据库
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。
|
2月前
|
人工智能 关系型数据库 分布式数据库
媒体声音|从亚太到欧美,阿里云瑶池数据库凭何成为中企出海的技术底气?
在中企出海的时代浪潮中,瑶池数据库正凭借其技术创新、场景化解决方案、智能化能力、全球化布局,成为企业跨越挑战、构建全球竞争力的关键伙伴;同时也以硬核的技术实力证明了中国数据库的国际竞争力。
|
2月前
|
安全 Apache 数据库
【倒计时3天】NineData x Apache Doris x 阿里云联合举办数据库技术Meetup,5月24日深圳见!
5月24日,NineData联合Apache Doris与阿里云在深圳举办数据库技术Meetup。活动聚焦「数据实时分析」与「数据同步迁移」两大领域,邀请行业专家分享技术趋势、产品实践及解决方案,助力企业构建高效安全的数据管理体系。时间:14:00-17:30;地点:深圳新一代产业园2栋20楼会议室。线下名额有限(80人),速报名参与深度交流!
66 1
|
2月前
|
SQL 关系型数据库 MySQL
阿里云《快速连接云数据库RDS》训练营,火热开营中!
快速连接云数据库 RDS 训练营开营啦!从 0 到 1 学习实战技能,涵盖 RDS MySQL 快速连接、DMS 数据管理及 SQL 实战案例。完成任务赢取专业飞盘、积木等好礼(限量 100 份)
|
3月前
|
Cloud Native 关系型数据库 MySQL
华鼎冷链科技 × 阿里云瑶池数据库,打造全链路协同的智慧冷链新标杆
从 PolarDB 的高性能数据库服务到 AnalyticDB 的强大数据分析,阿里云提供的丰富产品矩阵为华鼎冷链科技构建了全面的解决方案,推动华鼎冷链科技从成本中心向效率中心转型。
|
3月前
|
人工智能 关系型数据库 分布式数据库
让数据与AI贴得更近,阿里云瑶池数据库系列产品焕新升级
4月9日阿里云AI势能大会上,阿里云瑶池数据库发布重磅新品及一系列产品能力升级。「推理加速服务」Tair KVCache全新上线,实现KVCache动态分层存储,显著提高内存资源利用率,为大模型推理降本提速。

热门文章

最新文章