动态规划:二项式序列

简介: 今天,我终于理解了帕斯卡三角的实际应用。
TB1AK6hUgDqK1RjSZSyXXaxEVXa.jpg

本文为 AI 研习社编译的技术博客,原标题 :

Dynamic Programming — Binomial Sequence

作者 | Barun Halder

翻译 | 孙稚昊2  

校对 | 邓普斯•杰弗        审核 | 酱番梨       整理 | 立鱼王

原文链接:

https://medium.com/@bhalder/dynamic-programming-binomial-sequence-62e92d1cc2b1

今天,我终于理解了帕斯卡三角的实际应用。帕斯卡序列是我在大学第一年编程实现的东西。这是一个很有趣的练习。它是一种找到规律并用C或Java编程实现的问题。

动态规划问题可以是非常难的。二项式序列和它的变种问题一直都是我的短板。我从没简单地得到答案,有时即使我有了想法,也不能直接写出可以工作的代码。这是为什么我这次决定尝试一种新的动态规划方法,并且阅读Skiena的前八章。在阅读的过程中,问题被探讨,并且我一下豁然开朗。二项式,帕斯卡三角和动态规划之间的联系被重新建立起来。讽刺的是,我一直困惑的问题,二项式问题的变种的答案,就是我写的第一个程序,帕斯卡三角。

TB12rvNUhnaK1RjSZFBXXcW7VXa.png

帕斯卡三角

帕斯卡三角如上图所示。其中每一个元素都是它正上面两个数字之和。问题就是,什么叫“正上方”?这样的东西要如何在代码中表达?

如果我们用图中的6作为例子,它正上方的两个数字是3和3. 6在第4行,第3列。两个3在上一行--第三行,第二和第三列。同样的规律也适用于第五行的两个10. 现在,我们能够提取的规律是--- 第[n, k] 个元素是 第 [n-1 , k] , [n-1, k-1]个元素的和。

那么,这和二项式原理有什么关系呢?回想一下,二项式数是像这样的:

TB1wwvmUmzqK1RjSZFjXXblCFXa.png

二项式序列

这个的物理意义是:如果我们从n 个元素中选取k  个元素。我们既可以先选择第n 个元素,然后从剩下n- 1个元素中选取 k-1 个,也可以丢掉第n 个元素,从剩下n-1 个元素中选取k 个。我们在帕斯卡三角中看到的对称性在这里很明显。

现在来用代码实现它。如果我们把每个 nCk 的结果存进一个矩阵中,我们可以更高效地计算高维序列。很明显,一个值被计算好后,它会被保存起来给后续的运算使用。这很有记忆化的潜力!

我们先从二项式序列的递归解开始。这里面可以观察到明显的递归关系。对于任何递归函数,初始值都是必须的。对于二项式序列,我们用从n个元素中选取0个元素的情况当作初始值。这样的选择只有一种方法:空集。

另一种初始情况是:从n 个元素集中选取全部的n 个元素,只有一种方法。最后,从n个元素中选取1个,有n种方法。这就是我们需要的所有初始情况。

递归解如下图所示:

TB129YlUbvpK1RjSZPiXXbmwXXa.jpg

二项式序列-递归解

注意上面的解法中有很多被重复计算的子问题。为了避免重复计算,我们把中间结果存在一个矩阵中。我们来用一种遍历的方法来实现它。我们先用上文提到的初始情况来填充矩阵。(图中我用了简单的方法,把所有值都初始化为1。这有些浪费)这里只有从n 中取1的情况没被表示。我们要计算得到这种情况。用python 实现的遍历解法如下图所示:雷锋网雷锋网雷锋网(公众号:雷锋网)

TB1To_kUb2pK1RjSZFsXXaNlXXa.jpg

二项式序列--遍历解

运行的结果如下图所示:

TB1nnvBUhYaK1RjSZFnXXa80pXa.png

输出结果

在这篇文章中,我们讨论了二项式序列和它与帕斯卡三角之间的关系。我们沿着这个关系,并且意识到有时连接一些点要花10年。我们还讨论了同样解的递归和遍历方法。我很推荐阅读Skiena 和 CLRS 来学习你不熟悉的算法。

继续编程!

想要继续查看该篇文章相关链接和参考文献?

点击【动态规划:二项式序列】即可访问:

https://ai.yanxishe.com/page/TextTranslation/1416

社长今日推荐:AI入门、大数据、机器学习免费教程

35本世界顶级原本教程限时开放,这类书单由知名数据科学网站 KDnuggets 的副主编,同时也是资深的数据科学家、深度学习技术爱好者的Matthew Mayo推荐,他在机器学习和数据科学领域具有丰富的科研和从业经验。

点击链接即可获取:https://ai.yanxishe.com/page/resourceDetail/417

目录
相关文章
|
7月前
|
机器学习/深度学习 算法 测试技术
【动态规划】C++算法:446等差数列划分 II - 子序列
【动态规划】C++算法:446等差数列划分 II - 子序列
|
7月前
|
算法 测试技术 C#
【状态压缩 动态规划 数论】1799. N 次操作后的最大分数和
【状态压缩 动态规划 数论】1799. N 次操作后的最大分数和
|
7月前
|
机器人
动态规划矩阵
动态规划矩阵
48 0
|
7月前
|
算法 测试技术 C++
【动态规划】【数学】【C++算法】805 数组的均值分割
【动态规划】【数学】【C++算法】805 数组的均值分割
|
算法
【学会动态规划】摆动序列(27)
【学会动态规划】摆动序列(27)
52 0
|
算法
Manachar算法(马拉车算法):快速求取最长回文子串
求取最长回文子串的长度的最佳方法为 Manachar算法 ,俗称马拉车算法。常见的方法就是中心扩散法,但时间复杂度较高。
98 0
Manachar算法(马拉车算法):快速求取最长回文子串
|
算法 内存技术
求组合数三种算法
求组合数三种算法
85 0
|
算法
秒懂算法 | 递推方程求解方法
时间复杂度和空间复杂度表示为递推方程的两种求解方法。
344 1
秒懂算法 | 递推方程求解方法
|
C++ 容器
求解子序列
求解子序列
66 0
|
算法
LeetCode:376. 摆动序列——说什么贪心和动规~
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。 子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
116 0