hive

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: hive 的 表与hdfs数据关系映射放在元数据库中,也就是mysql中,而真正的数据放在 hdfs中,通过mysql中表 ,字段等与hdfs上数据的映射来查询   1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快

hive 的 表与hdfs数据关系映射放在元数据库中,也就是mysql中,而真正的数据放在 hdfs中,通过mysql中表 ,字段等与hdfs上数据的映射来查询

  1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

  2.Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。

  要理解hive,必须先理解hadoop和mapreduce,如果有不熟悉的童鞋,可以百度一下。

  使用hive的命令行接口,感觉很像操作关系数据库,但是hive和关系数据库还是有很大的不同,下面我就比较下hive与关系数据库的区别,具体如下:

  1. hive和关系数据库存储文件的系统不同,hive使用的是hadoop的HDFS(hadoop的分布式文件系统),关系数据库则是服务器本地的文件系统;
  2. hive使用的计算模型是mapreduce,而关系数据库则是自己设计的计算模型;
  3. 关系数据库都是为实时查询的业务进行设计的,而hive则是为海量数据做数据挖掘设计的,实时性很差;实时性的区别导致hive的应用场景和关系数据库有很大的不同;
  4. Hive很容易扩展自己的存储能力和计算能力,这个是继承hadoop的,而关系数据库在这个方面要比数据库差很多。

  以上都是从宏观的角度比较hive和关系数据库的区别,hive和关系数据库的异同还有很多,我在文章的后面会一一描述。

  下面我来讲讲hive的技术架构,大家先看下面的架构图:

 

  由上图可知,hadoop和mapreduce是hive架构的根基。Hive架构包括如下组件:CLI(command line interface)、JDBC/ODBC、Thrift Server、WEB GUI、metastore和Driver(Complier、Optimizer和Executor),这些组件我可以分为两大类:服务端组件和客户端组件。

   首先讲讲服务端组件:

  Driver组件:该组件包括Complier、Optimizer和Executor,它的作用是将我们写的HiveQL(类SQL)语句进行解析、编译优化,生成执行计划,然后调用底层的mapreduce计算框架。

  Metastore组件:元数据服务组件,这个组件存储hive的元数据,hive的元数据存储在关系数据库里,hive支持的关系数据库有derby、mysql。元数据对于hive十分重要,因此hive支持把metastore服务独立出来,安装到远程的服务器集群里,从而解耦hive服务和metastore服务,保证hive运行的健壮性,这个方面的知识,我会在后面的metastore小节里做详细的讲解。

  Thrift服务:thrift是facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,hive集成了该服务,能让不同的编程语言调用hive的接口。

  客户端组件:

  CLI:command line interface,命令行接口。

  Thrift客户端:上面的架构图里没有写上Thrift客户端,但是hive架构的许多客户端接口是建立在thrift客户端之上,包括JDBC和ODBC接口。

  WEBGUI:hive客户端提供了一种通过网页的方式访问hive所提供的服务。这个接口对应hive的hwi组件(hive web interface),使用前要启动hwi服务。

  下面我着重讲讲metastore组件,具体如下:

  Hive的metastore组件是hive元数据集中存放地。Metastore组件包括两个部分:metastore服务和后台数据的存储。后台数据存储的介质就是关系数据库,例如hive默认的嵌入式磁盘数据库derby,还有mysql数据库。Metastore服务是建立在后台数据存储介质之上,并且可以和hive服务进行交互的服务组件,默认情况下,metastore服务和hive服务是安装在一起的,运行在同一个进程当中。我也可以把metastore服务从hive服务里剥离出来,metastore独立安装在一个集群里,hive远程调用metastore服务,这样我们可以把元数据这一层放到防火墙之后,客户端访问hive服务,就可以连接到元数据这一层,从而提供了更好的管理性和安全保障。使用远程的metastore服务,可以让metastore服务和hive服务运行在不同的进程里,这样也保证了hive的稳定性,提升了hive服务的效率。

  Hive的执行流程如下图所示:

图描述的很清晰了,我这里就不在累述了。

下面我给大家展示一个简单的例子,看看hive是怎么操作的。

首先我们创建一个普通的文本文件,里面只有一行数据,该行也只存储一个字符串,命令如下:

echo  ‘sharpxiajun’ > /home/hadoop/test.txt

 然后我们建一张hive的表:

hive –e “create table test (value string );

 接下来加载数据:

Load data local inpath ‘home/hadoop/test.txt’ overwrite into  table test

 最后我们查询下表:

hive –e ‘ select  * from  test’;

   大家看到了吧,hive十分简单,很好入门,操作和sql很像,下面我就要深入分析下hive与关系数据库的区别,这部分可能有些人看的不是很明白,但是很有必要提前提出,以后我的文章里将进一步讲述hive,那时不太明白的童鞋在看看这部分,很多问题就会清晰很多,具体如下:

  1. 关系数据库里,表的加载模式是在数据加载时候强制确定的(表的加载模式是指数据库存储数据的文件格式),如果加载数据时候发现加载的数据不符合模式,关系数据库则会拒绝加载数据,这个就叫“写时模式”,写时模式会在数据加载时候对数据模式进行检查校验的操作。Hive在加载数据时候和关系数据库不同,hive在加载数据时候不会对数据进行检查,也不会更改被加载的数据文件,而检查数据格式的操作是在查询操作时候执行,这种模式叫“读时模式”。在实际应用中,写时模式在加载数据时候会对列进行索引,对数据进行压缩,因此加载数据的速度很慢,但是当数据加载好了,我们去查询数据的时候,速度很快。但是当我们的数据是非结构化,存储模式也是未知时候,关系数据操作这种场景就麻烦多了,这时候hive就会发挥它的优势。
  2. 关系数据库一个重要的特点是可以对某一行或某些行的数据进行更新、删除操作,hive不支持对某个具体行的操作,hive对数据的操作只支持覆盖原数据和追加数据。Hive也不支持事务和索引。更新、事务和索引都是关系数据库的特征,这些hive都不支持,也不打算支持,原因是hive的设计是海量数据进行处理,全数据的扫描时常态,针对某些具体数据进行操作的效率是很差的,对于更新操作,hive是通过查询将原表的数据进行转化最后存储在新表里,这和传统数据库的更新操作有很大不同。
  3. Hive也可以在hadoop做实时查询上做一份自己的贡献,那就是和hbase集成,hbase可以进行快速查询,但是hbase不支持类SQL的语句,那么此时hive可以给hbase提供sql语法解析的外壳,可以用类sql语句操作hbase数据库。

HIVE元数据表数据字典:

表名

说明

BUCKETING_COLS

Hive表CLUSTERED BY字段信息(字段名,字段序号)

COLUMNS

Hive表字段信息(字段注释,字段名,字段类型,字段序号)

DBS

 

NUCLEUS_TABLES

元数据表和hive中class类的对应关系

PARTITIONS

Hive表分区信息(创建时间,具体的分区)

PARTITION_KEYS

Hive分区表分区键(名称,类型,comment,序号)

PARTITION_KEY_VALS

Hive表分区名(键值,序号)

PARTITION_PARAMS

 

SDS

所有hive表、表分区所对应的hdfs数据目录和数据格式

SD_PARAMS

 

SEQUENCE_TABLE

Hive对象的下一个可用ID

SERDES

Hive表序列化反序列化使用的类库信息

SERDE_PARAMS

序列化反序列化信息,如行分隔符、列分隔符、NULL的表示字符等

SORT_COLS

Hive表SORTED BY字段信息(字段名,sort类型,字段序号)

TABLE_PARAMS

表级属性,如是否外部表,表注释等

TBLS

所有hive表的基本信息



Hive的几种常见的数据导入方式
这里介绍四种:
(1)、从本地文件系统中导入数据到Hive表;
(2)、从HDFS上导入数据到Hive表;
(3)、从别的表中查询出相应的数据并导入到Hive表中;
(4)、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。


一、从本地文件系统中导入数据到Hive表


先在Hive里面创建好表,如下:
  1. hive> create table wyp
  2.     > (id int, name string,
  3.     > age int, tel string)
  4.     > ROW FORMAT DELIMITED
  5.     > FIELDS TERMINATED BY '\t'
  6.     > STORED AS TEXTFILE;
  7. OK
  8. Time taken: 2.832 seconds
复制代码

这个表很简单,只有四个字段,具体含义我就不解释了。本地文件系统里面有个/home/wyp/wyp.txt文件,内容如下:
  1. [wyp@master ~]$ cat wyp.txt
  2. 1       wyp     25      13188888888888
  3. 2       test    30      13888888888888
  4. 3       zs      34      899314121
复制代码

wyp.txt文件中的数据列之间是使用\t分割的,可以通过下面的语句将这个文件里面的数据导入到wyp表里面,操作如下:
  1. hive> load data local inpath 'wyp.txt' into table wyp;
  2. Copying data from file:/home/wyp/wyp.txt
  3. Copying file: file:/home/wyp/wyp.txt
  4. Loading data to table default.wyp
  5. Table default.wyp stats:
  6. [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 67]
  7. OK
  8. Time taken: 5.967 seconds
复制代码

这样就将wyp.txt里面的内容导入到wyp表里面去了,可以到wyp表的数据目录下查看,如下命令:

  1. hive> dfs -ls /user/hive/warehouse/wyp ;
  2. Found 1 items
  3. -rw-r--r--3 wyp supergroup 67 2014-02-19 18:23 /hive/warehouse/wyp/wyp.txt
复制代码

需要注意的是:

和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,Hive并不支持INSERT INTO …. VALUES形式的语句。

二、HDFS上导入数据到Hive表


  从本地文件系统中将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/wyp/),然后再将数据从那个临时目录下移动(注意,这里说的是移动,不是复制!)到对应的Hive表的数据目录里面。既然如此,那么Hive肯定支持将数据直接从HDFS上的一个目录移动到相应Hive表的数据目录下,假设有下面这个文件/home/wyp/add.txt,具体的操作如下:
  1. [wyp@master /home/q/hadoop-2.2.0]$ bin/hadoop fs -cat /home/wyp/add.txt
  2. 5       wyp1    23      131212121212
  3. 6       wyp2    24      134535353535
  4. 7       wyp3    25      132453535353
  5. 8       wyp4    26      154243434355
复制代码

上面是需要插入数据的内容,这个文件是存放在HDFS上/home/wyp目录(和一中提到的不同,一中提到的文件是存放在本地文件系统上)里面,我们可以通过下面的命令将这个文件里面的内容导入到Hive表中,具体操作如下:

  1. hive> load data inpath '/home/wyp/add.txt' into table wyp;
  2. Loading data to table default.wyp
  3. Table default.wyp stats:
  4. [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 215]
  5. OK
  6. Time taken: 0.47 seconds

  7. hive> select * from wyp;
  8. OK
  9. 5       wyp1    23      131212121212
  10. 6       wyp2    24      134535353535
  11. 7       wyp3    25      132453535353
  12. 8       wyp4    26      154243434355
  13. 1       wyp     25      13188888888888
  14. 2       test    30      13888888888888
  15. 3       zs      34      899314121
  16. Time taken: 0.096 seconds, Fetched: 7 row(s)
复制代码

从上面的执行结果我们可以看到,数据的确导入到wyp表中了!请注意load data inpath ‘/home/wyp/add.txt’ into table wyp;里面是没有local这个单词的,这个是和一中的区别。

三、从别的表中查询出相应的数据并导入到Hive表中


假设Hive中有test表,其建表语句如下所示:

  1. hive> create table test(
  2.     > id int, name string
  3.     > ,tel string)
  4.     > partitioned by
  5.     > (age int)
  6.     > ROW FORMAT DELIMITED
  7.     > FIELDS TERMINATED BY '\t'
  8.     > STORED AS TEXTFILE;
  9. OK
  10. Time taken: 0.261 seconds
复制代码

大体和wyp表的建表语句类似,只不过test表里面用age作为了分区字段。对于分区,这里在做解释一下:
分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse/dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。

下面语句就是将wyp表中的查询结果并插入到test表中:
  1. hive> insert into table test
  2.     > partition (age='25')
  3.     > select id, name, tel
  4.     > from wyp;
  5. #####################################################################
  6.            这里输出了一堆Mapreduce任务信息,这里省略
  7. #####################################################################
  8. Total MapReduce CPU Time Spent: 1 seconds 310 msec
  9. OK
  10. Time taken: 19.125 seconds

  11. hive> select * from test;
  12. OK
  13. 5       wyp1    131212121212    25
  14. 6       wyp2    134535353535    25
  15. 7       wyp3    132453535353    25
  16. 8       wyp4    154243434355    25
  17. 1       wyp     13188888888888  25
  18. 2       test    13888888888888  25
  19. 3       zs      899314121       25
  20. Time taken: 0.126 seconds, Fetched: 7 row(s)
复制代码
这里做一下说明:
我们知道我们传统数据块的形式insert into table values(字段1,字段2),这种形式hive是不支持的。

通过上面的输出,我们可以看到从wyp表中查询出来的东西已经成功插入到test表中去了!如果目标表(test)中不存在分区字段,可以去掉partition (age=’25′)语句。当然,我们也可以在select语句里面通过使用分区值来动态指明分区:
  1. hive> set hive.exec.dynamic.partition.mode=nonstrict;
  2. hive> insert into table test
  3.     > partition (age)
  4.     > select id, name,
  5.     > tel, age
  6.     > from wyp;
  7. #####################################################################
  8.            这里输出了一堆Mapreduce任务信息,这里省略
  9. #####################################################################
  10. Total MapReduce CPU Time Spent: 1 seconds 510 msec
  11. OK
  12. Time taken: 17.712 seconds


  13. hive> select * from test;
  14. OK
  15. 5       wyp1    131212121212    23
  16. 6       wyp2    134535353535    24
  17. 7       wyp3    132453535353    25
  18. 1       wyp     13188888888888  25
  19. 8       wyp4    154243434355    26
  20. 2       test    13888888888888  30
  21. 3       zs      899314121       34
  22. Time taken: 0.399 seconds, Fetched: 7 row(s)
复制代码

这种方法叫做动态分区插入,但是Hive中默认是关闭的,所以在使用前需要先把hive.exec.dynamic.partition.mode设置为nonstrict。当然,Hive也支持insert overwrite方式来插入数据,从字面我们就可以看出,overwrite是覆盖的意思,是的,执行完这条语句的时候,相应数据目录下的数据将会被覆盖!而insert into则不会,注意两者之间的区别。例子如下:

  1. hive> insert overwrite table test
  2.     > PARTITION (age)
  3.     > select id, name, tel, age
  4.     > from wyp;
复制代码

更可喜的是,Hive还支持多表插入,什么意思呢?在Hive中,我们可以把insert语句倒过来,把from放在最前面,它的执行效果和放在后面是一样的,如下:
  1. hive> show create table test3;
  2. OK
  3. CREATE  TABLE test3(
  4.   id int,
  5.   name string)
  6. Time taken: 0.277 seconds, Fetched: 18 row(s)

  7. hive> from wyp
  8.     > insert into table test
  9.     > partition(age)
  10.     > select id, name, tel, age
  11.     > insert into table test3
  12.     > select id, name
  13.     > where age>25;

  14. hive> select * from test3;
  15. OK
  16. 8       wyp4
  17. 2       test
  18. 3       zs
  19. Time taken: 4.308 seconds, Fetched: 3 row(s)
复制代码

可以在同一个查询中使用多个insert子句,这样的好处是我们只需要扫描一遍源表就可以生成多个不相交的输出。这个很酷吧!

四、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中


在实际情况中,表的输出结果可能太多,不适于显示在控制台上,这时候,将Hive的查询输出结果直接存在一个新的表中是非常方便的,我们称这种情况为CTAS(create table .. as select)如下:

  1. hive> create table test4
  2.     > as
  3.     > select id, name, tel
  4.     > from wyp;

  5. hive> select * from test4;
  6. OK
  7. 5       wyp1    131212121212
  8. 6       wyp2    134535353535
  9. 7       wyp3    132453535353
  10. 8       wyp4    154243434355
  11. 1       wyp     13188888888888
  12. 2       test    13888888888888
  13. 3       zs      899314121
  14. Time taken: 0.089 seconds, Fetched: 7 row(s)
复制代码


相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
8天前
|
SQL 存储 Java
Hive 中的 SerDe 详解
【8月更文挑战第31天】
33 1
|
10月前
|
SQL 存储 分布式计算
hive解决了什么问题
hive解决了什么问题
78 0
|
12月前
|
SQL Java 数据库连接
|
SQL 存储 分布式计算
HIVE初识
什么是HiveHive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载,可以简称为ETL。
76 1
|
SQL 存储 分布式计算
Hive小结1
Hive小结
92 1
|
SQL 存储 分布式计算
Hive小结2
Hive小结2
108 0
|
SQL 分布式计算 大数据
Hive 到底有什么用?
MapReduce简化大数据编程难度,但对经常需大数据计算的人,如从事研究BI的数据分析师,他们通常使用SQL进行大数据分析和统计,MapReduce编程还是有门槛。且若每次统计和分析都开发相应MapReduce程序,成本确实太高。
98 0
Hive中not in的正确使用
Hive中not in的正确使用
Hive中not in的正确使用
|
SQL 存储 分布式计算
【Hive】(一)Hive 入门
【Hive】(一)Hive 入门
335 0
【Hive】(一)Hive 入门
|
SQL 数据库 HIVE