【Java进阶】并发编程

简介: 【Java进阶】并发编程概述三种性质可见性:一个线程对共享变量的修改,另一个线程能立刻看到。缓存可导致可见性问题。原子性:一个或多个CPU执行操作不被中断。线程切换可导致原子性问题。有序性:编译器优化可能导致指令顺序发生改变。

【Java进阶】并发编程

  1. 概述

三种性质
可见性:一个线程对共享变量的修改,另一个线程能立刻看到。缓存可导致可见性问题。
原子性:一个或多个CPU执行操作不被中断。线程切换可导致原子性问题。
有序性:编译器优化可能导致指令顺序发生改变。编译器优化可能导致有序性问题。
三个问题
安全性问题:线程安全
活跃性问题:死锁、活锁、饥饿
性能问题:
使用无锁结构:TLS,Copy-On-Write,乐观锁;Java的原子类,Disruptor无锁队列
减少锁的持有时间:让锁细粒度。如ConcurrentHashmap;再如读写锁,读无锁写有锁

  1. Java内存模型

volatile
C语言中的原意:禁用CPU缓存,从内存中读出和写入。
Java语言的引申义:
Java会将变量立刻写入内存,其他线程读取时直接从内存读(普通变量改变后,什么时候写入内存是不一定的)
禁止指令重排序
解决问题:
保证可见性
保证有序性
不能保证原子性
Happens-Before规则(H-B)
程序顺序性规则:前面执行的语句对后面语句可见
volatile变量规则:volatile变量的写操作对后续的读操作可见
传递性规则:A H-B B,B H-B C,那么A H-B C
管程中锁的规则:对一个锁的解锁 H-B于 后续对这个锁的加锁

  1. 互斥锁sychronized

锁对象:非静态this,静态Class,括号Object参数
预防死锁:
互斥:不能破坏
占有且等待:同时申请所有资源
不可抢占:sychronized解决不了,Lock可以解决
循环等待:给资源设置id字段,每次都是按顺序申请锁
等待通知机制:
wait、notify、notifyAll
复制代码
class Allocator {
private List

Object from, Object to){
// 经典写法
while(als.contains(from) ||
     als.contains(to)){
  try{
    wait();
  }catch(Exception e){
  }   
} 
als.add(from);
als.add(to);  

}
// 归还资源
synchronized void free(

Object from, Object to){
als.remove(from);
als.remove(to);
notifyAll();

}
}
复制代码

  1. 线程的生命周期

通用线程的生命周期:

Java线程的生命周期:

状态流转:
RUNNABLE -- BLOCKED:线程获取和等待sychronized隐式锁
ps:调用阻塞式API时,不会进入BLOCKED状态,但对于操作系统而言,线程实际上进入了休眠态,只不过JVM不关心。
RUNNABLE -- WAITING:
Object.wait()
Thread.join()
LockSupport.park()
RUNNABLE -- TIMED-WAITING:调用各种带超时参数的线程方法
NEW -- RUNNABLE:Thread.start()
RUNNABLE -- TERMINATED:线程运行完毕,有异常抛出,或手动调用线程stop()

  1. 线程的性能指标

延迟:发出请求到收到响应
吞吐量:单位时间内处理的请求数量
最佳线程数:
CPU密集型:线程数 = CPU核数 + 1
IO密集型:线程数 = (IO耗时/CPU耗时 + 1)* CPU核数

  1. JDK并发包

Lock:lock、unlock
互斥锁,和sychronized一样的功能,里面能保证可见性
Condition:await、signal
条件,相比于sychronized的Object.wait,Condition可以实现多条件唤醒等待机制
Semaphore:acquire、release
信号量,可以用来实现多个线程访问一个临界区,如实现对象池设计中的限流器
ReadWriteLock:readLock、writeLock
写锁、读锁,允许多线程读,一个线程写,写锁持有时所有读锁和写锁的获取都阻塞(写锁的获取要等所有读写锁释放)
适用于读多写少的场景
StampedLock:tryOptimisticRead、validate
写锁、读锁(分悲观读锁、乐观读锁):
线程同步:
CountDownLatch:一个线程等待多个线程
初始化 --> countDown(减1) --> await(等待为0)
CyclicBarrier:一组线程之间相互等待
初始化 --> 设置回调函数(为0时执行,并返回原始值) --> await(减1并等待为0)
并发容器:
List:
CopyOnWriteArrayList:适用写少的场景,要容忍可能的读不一致
Map:
ConcurrentHashMap:分段锁
ConcurrentSkipListMap:跳表
Set:
CopyOnWriteArraySet:同上
ConcurrentSkipListSet:同上
Queue:
分类:阻塞Blocking、单端Queue、双端Deque
单端阻塞(BlockingQueue):Array~、Linked~、Sychronized~、LinkedTransfer~、Priority~、Delay~
双端阻塞(BlockingDeque):Linked~
单端非阻塞(Queue):ConcurrentLinked~
双端非阻塞(Deque):ConcurrentLinked~
原子类:
无锁方案原理:增加了硬件支持,即CPU的CAS指令
ABA问题:有解决ABA问题的需求时,增加一个递增的版本号纬度化解
分类:原子化基本数据类型,原子化引用类型、原子化数组、原子化对象属性更新器、原子化累加器
Future:
Future:cancel、isCanceled、isDone、get
FutureTask:实现了Runnable和Future接口
强大工具类
CompletableFuture:一个强大的异步编程工具类(任务之间有聚合关系),暂时略
CompletionService:批量并行任务,暂时略

  1. 线程池

设计原理:
用生产者消费者模型,线程池是消费者,调用者是生产者。
线程池对象里维护一个阻塞队列,一个已经跑起来的工作线程组ThreadsList
ThreadList里面循环从队列中去Runnable任务,并调用run方法
复制代码
1 // 简化的线程池,仅用来说明工作原理
2 class MyThreadPool{
3 // 利用阻塞队列实现生产者 - 消费者模式
4 BlockingQueue workQueue;
5 // 保存内部工作线程
6 List threads
7 = new ArrayList<>();
8 // 构造方法
9 MyThreadPool(int poolSize,
10 BlockingQueue workQueue){
11 this.workQueue = workQueue;
12 // 创建工作线程
13 for(int idx=0; idx14 WorkerThread work = new WorkerThread();
15 work.start();
16 threads.add(work);
17 }
18 }
19 // 提交任务
20 void execute(Runnable command){
21 workQueue.put(command);
22 }
23 // 工作线程负责消费任务,并执行任务
24 class WorkerThread extends Thread{
25 public void run() {
26 // 循环取任务并执行
27 while(true){ ①
28 Runnable task = workQueue.take();
29 task.run();
30 }
31 }
32 }
33 }
34
35 / 下面是使用示例 /
36 // 创建有界阻塞队列
37 BlockingQueue workQueue =
38 new LinkedBlockingQueue<>(2);
39 // 创建线程池
40 MyThreadPool pool = new MyThreadPool(
41 10, workQueue);
42 // 提交任务
43 pool.execute(()->{
44 System.out.println("hello");
45 });
复制代码
ThreadPoolExcutor
参数
corePoolSize:线程池保有的最小线程数
maximumPoolSize:线程池创建的最大线程数
keepAliveTime:工作线程多久没收到任务,被认为是闲的
workQueue:工作队列
threadFactory:通过这个参数自定义如何创建线程
handler:任务拒绝策略
默认为AbortPolicy,会抛出RejectedExecutionException,这是个运行时异常,要注意
方法
void execute()
Future submit(Runnable task | Callable task)

  1. 鸟瞰并行任务分类

PS:整理自极客时间《Java并发编程》
原文地址https://www.cnblogs.com/flashsun/p/10776168.html

相关文章
|
2月前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
4月前
|
Java 程序员 调度
【JAVA 并发秘籍】进程、线程、协程:揭秘并发编程的终极武器!
【8月更文挑战第25天】本文以问答形式深入探讨了并发编程中的核心概念——进程、线程与协程,并详细介绍了它们在Java中的应用。文章不仅解释了每个概念的基本原理及其差异,还提供了实用的示例代码,帮助读者理解如何在Java环境中实现这些并发机制。无论你是希望提高编程技能的专业开发者,还是准备技术面试的求职者,都能从本文获得有价值的见解。
66 1
|
22天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
36 2
|
3月前
|
Java 开发者
深入探索Java中的并发编程
本文将带你领略Java并发编程的奥秘,揭示其背后的原理与实践。通过深入浅出的解释和实例,我们将探讨Java内存模型、线程间通信以及常见并发工具的使用方法。无论是初学者还是有一定经验的开发者,都能从中获得启发和实用的技巧。让我们一起开启这场并发编程的奇妙之旅吧!
32 5
|
3月前
|
算法 安全 Java
Java中的并发编程是如何实现的?
Java中的并发编程是通过多线程机制实现的。Java提供了多种工具和框架来支持并发编程。
18 1
|
3月前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
3月前
|
安全 Java 测试技术
掌握Java的并发编程:解锁高效代码的秘密
在Java的世界里,并发编程就像是一场精妙的舞蹈,需要精准的步伐和和谐的节奏。本文将带你走进Java并发的世界,从基础概念到高级技巧,一步步揭示如何编写高效、稳定的并发代码。让我们一起探索线程池的奥秘、同步机制的智慧,以及避免常见陷阱的策略。
|
4月前
|
安全 Java 编译器
深入Java内存模型:解锁并发编程的秘密
【8月更文挑战第24天】在Java的世界,内存模型是支撑并发编程的基石。本文将深入浅出地探讨Java内存模型(JMM)的核心概念、工作原理及其对高效并发策略的影响。我们将通过实际代码示例,揭示如何利用JMM来设计高性能的并发应用,并避免常见的并发陷阱。无论你是Java新手还是资深开发者,这篇文章都将为你打开并发编程的新视角。
39 2
|
4月前
|
缓存 Java 数据处理
Java中的并发编程:解锁多线程的力量
在Java的世界里,并发编程是提升应用性能和响应能力的关键。本文将深入探讨Java的多线程机制,从基础概念到高级特性,逐步揭示如何有效利用并发来处理复杂任务。我们将一起探索线程的创建、同步、通信以及Java并发库中的工具类,带你领略并发编程的魅力。
|
4月前
|
Java 调度 开发者
Java并发编程:解锁多线程同步的奥秘
在Java的世界里,并发编程是提升应用性能的关键所在。本文将深入浅出地探讨Java中的并发工具和同步机制,带领读者从基础到进阶,逐步掌握多线程编程的核心技巧。通过实例演示,我们将一起探索如何在多线程环境下保持数据的一致性,以及如何有效利用线程池来管理资源。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开新的视野,让你对Java并发编程有更深入的理解和应用。
下一篇
无影云桌面