算法时间复杂度 和 空间复杂度-阿里云开发者社区

开发者社区> lhyxcxy> 正文

算法时间复杂度 和 空间复杂度

简介: 时间复杂度  算法复杂度分为时间复杂度和空间复杂度,一个好的算法应该具体执行时间短,所需空间少的特点。      随着计算机硬件和软件的提升,一个算法的执行时间是算不太精确的。只能依据统计方法对算法进行估算。我们抛开硬件和软件的因素,算法的好坏直接影响程序的运行时间。      我们看一下小例子:      int value = 0;                      
+关注继续查看

时间复杂度

 算法复杂度分为时间复杂度和空间复杂度,一个好的算法应该具体执行时间短,所需空间少的特点。

     随着计算机硬件和软件的提升,一个算法的执行时间是算不太精确的。只能依据统计方法对算法进行估算。我们抛开硬件和软件的因素,算法的好坏直接影响程序的运行时间。
     我们看一下小例子:
     int value = 0;                         // 执行了1次
     for (int i = 0; i < n; i++) {       // 执行了n次
          value += i;
     }
     这个算法执行了 1 + n 次,如果n无限大,我们可以把前边的1忽略,也就是说这个算法执行了n次
     时间复杂度常用大O符号表示,这个算法的时间复杂度就是O(n).
     概念: 一般情况下,算法的基本操作重复执行的次数是模块n的某一函数f(n),因此,算法的时间复杂度记做 T(n) = O(f(n))。 随着模块n的增大,算法执行的时间增长率f(n)的增长率成正比,所以f(n)越小,算法 的时间复杂度越低,算法的效率越高。
     计算时间复杂度
     1.去掉运行时间中的所有加法常数。
     2.只保留最高阶项。
     3.如果最高阶项存在且不是1,去掉与这个最高阶相乘的常数得到时间复杂度
 
我们看一个例子
     for (int i = 0; i < n; i++) {
          for (int j = i; j < n; j++) {
               // do .....
          }
     }
当 i = 0 时 里面的fo循环执行了n次,当i等待1时里面的for循环执行了n -  1次,当i 等于2里里面的fro执行了n - 2次........所以执行的次数是
根据我们上边的时间复杂度算法
     1.去掉运行时间中的所有加法常数: 没有加法常数不用考虑
     2.只保留最高阶项: 只保留 
     3. 去掉与这个最高阶相乘的常数:  去掉  只剩下 
     最终这个算法的时间复杂度为
 
再看一个线性的
      for ( int i = 0; i < n; i++) {
          // do .....
     }
     因为循环要执行n次所以时间复杂度为O(n)
 
其它的我也就不一个一个算了,下面给出了常用的时间复杂度
 

排序法

最差时间分析 平均时间复杂度 稳定度 空间复杂度
冒泡排序 O(n2) O(n2) 稳定 O(1)
快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n)
选择排序 O(n2) O(n2) 稳定 O(1)
二叉树排序 O(n2) O(n*log2n) 不一顶 O(n)

插入排序

O(n2) O(n2) 稳定 O(1)
堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1)
希尔排序 O O 不稳定 O(1)

空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地\"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(10g2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
数据结构面试之十二——排序3(排序算法归类、排序时间、空间复杂度、稳定性总结)
十一、数据结构面试之十二——排序3(排序算法归类、排序时间、空间复杂度、稳定性总结)
6 0
冰与火之歌:「时间」与「空间」复杂度 | 算法必看系列三十六
对于一个算法,其时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间; 反之,求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。另外,算法的所有性能之间都存在着或多或少的相互影响。因此,当设计一个算法(特别是大型算法)时,要综合考虑算法的各项性能,算法的使用频率,算法处理的数据量的大小,算法描述语言的特性,算法运行的机器系统环境等各方面因素,才能够设计出比较好的算法。
2200 0
重磅|阿里云HBase Ganos全新升级,推空间、时空、遥感一体化基础云服务
Ganos是阿里云时空PaaS服务的自研核心引擎。Ganos已作为云数据库时空引擎与数据库平台融合,建立了以自研云原生数据库POALRDB为基础,联合NoSQL大数据平台(Ali-HBASE和X-Pack Spark)的完整时空地理信息云化管理解决方案。
2055 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
4483 0
深入字节码 -- 计算方法执行时间
java程序通过javac编译之后生成文件.class就是字节码集合,正是有这样一种中间码(字节码),使得scala/groovy/clojure等函数语言只用实现一个编译器即可运行在JVM上。
3291 0
javascript 一个关于时间排序的算法(一个页面多个倒计时排序)
上周要做一个活动页面 秒杀列表页 需要一个时间的算法排序 自己琢磨了半天想了各种算法也没搞出来,后来问了下一个后台的php同学 他写了个算法给我看了下 ,刚开始看的时候觉得这就是个纯算法,不能转化成页面的dom效果,可是再看了两遍发现可以 于是我就改了改 实现了 不禁感叹 确实蛮赞的 于是就博一客;...
836 0
理解常见的算法时间复杂度
理解常见的算法时间复杂度
28 0
+关注
lhyxcxy
专注于前后端服务器交互,人工智能,NLP领域
413
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载