大数据学习:带你从多个维度来分析大数据发展趋势

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 如今“大数据”已不再是单纯描述数据特征的词汇,而是一个多学科交融的热点研究领域,其背后有着复杂和深刻的新理念。

如今“大数据”已不再是单纯描述数据特征的词汇,而是一个多学科交融的热点研究领域,其背后有着复杂和深刻的新理念。

今天我们带大家从“技术、工程、科学和应用”这四个维度分析大数据的研究现状与挑战,探讨未来研究的侧重点和发展趋势,如图3所示。

screenshot

1、纵向维度。

“大数据技术”是大数据实践活动中应用的技术方案和工具等,基于信息流程视角,其相关技术涵盖数据采集、存储、传输、清洗、检索、处理和展示等多方面。虽然云计算、NoSQL、Hadoop等技术在大数据存储和处理的应用开启了新的纪元,但这些技术在算法优化、分析统计、语义处理、知识可视化呈现等方面还存在很多不足,这些问题在未来的研究中仍会成为关注的焦点。

2、横向维度。

“大数据应用”指大数据在实践中的具体应用,目前相关应用已在政治、经济、社会管理、军事活动和科学研究等领域开启了新的探索。目前数据源质量、个人隐私、数据公正公平等问题让人堪忧,微软首席研究员DanahBoyd教授对大数据提出了“冷思考”,号召大家客观理性对待大数据。未来大数据应用的涉及面将会更广泛,也更注重解决实际问题,如移动互联网平台的深层次开发和利用、数据平等获取使用、涉密与公开权衡、社交媒体言论实时监管、新媒体资源的整合、网络舆情实时引导和应对、国家安全防卫、政治选举、自然灾害预警、交通管理以及社会公共卫生安全等。

3、宏观维度。

“大数据工程”指大数据的规划建设运营管理的系统工程,研究领域涉及宏观层面的系统规划和投入,微观层面的具体实施和建设等。具体而言,国家层面:法律法规、通用标准、政策制定、基础平台建设、产业链集成等会进一步完善;顶层设计层面:系统化地规划大数据工程、制定标准、创新管理模式、优化人才培养、合理布局学科建设等问题会成为未来研究的重点。

4、微观维度。

“大数据科学”研究大数据网络发展和运营过程中发现和验证大数据规律,以及它与自然和社会活动间的关系,主要在理论层面探索规律,进而指导实践。系统科学地搭建和完善大数据科学相关理论、方法、流程、模型,并探寻指导实践应用是未来的难点,但也是极为重要的关键点。大数据已经开始掀起一股新的信息浪潮,对大数据的研究和探索也将继续广泛而深入。通过前文的总结和分析,笔者发现目前的研究热点主要集中在对大数据理念的探讨、生物信息学的应用、云计算和Hadoop等相关技术的实践、及可视化分析和展示的研究。
screenshot

整体而言,现阶段的注意力主要停留在大数据技术和大数据应用层面,商业应用是主要的推动力量,业界和学界普遍关注新的技术手段来解决实践应用中的大数据问题。而大数据工程和大数据科学两个维度的研究目前较为稀少,相关成果只涉及数据开放和利用政策、学科教育、人才培养等部分内容,相信未来会得到进一步重视。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
207 14
|
5月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
175 4
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
164 0
|
5月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
303 3
|
3月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
146 14
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。