CRF 及CRF++ 安装与解释

简介: CRF简介 Conditional Random Field:条件随机场,一种机器学习技术(模型) CRF由John Lafferty最早用于NLP技术领域,其在NLP技术领域中主要用于文本标注,并有多种应用场景,例如: 分词(标注字的词位信息,由字构词)词性标注(标注分词的词性,例如:名词,动词,助词)命名实体识别(识别人名,地名,机构名,商品名等具有一定内在规律的实体名

CRF简介

Conditional Random Field:条件随机场,一种机器学习技术(模型)

CRFJohn Lafferty最早用于NLP技术领域,其在NLP技术领域中主要用于文本标注,并有多种应用场景,例如:

  • 分词(标注字的词位信息,由字构词)
  • 词性标注(标注分词的词性,例如:名词,动词,助词)
  • 命名实体识别(识别人名,地名,机构名,商品名等具有一定内在规律的实体名词)

本文主要描述如何使用CRF技术来进行中文分词。

CRF VS 词典统计分词

  • 基于词典的分词过度依赖词典和规则库,因此对于歧义词和未登录词的识别能力较低;其优点是速度快,效率高
  • CRF代表了新一代的机器学习技术分词,其基本思路是对汉字进行标注即由字构词(组词),不仅考虑了文字词语出现的频率信息,同时考虑上下文语境,具备较好的学习能力,因此其对歧义词和未登录词的识别都具有良好的效果;其不足之处是训练周期较长,运营时计算量较大,性能不如词典分词

CRF VS HMM,MEMM

  • 首先,CRFHMM(隐马模型)MEMM(最大熵隐马模型)都常用来做序列标注的建模,像分词、词性标注,以及命名实体标注
  • 隐马模型一个最大的缺点就是由于其输出独立性假设,导致其不能考虑上下文的特征,限制了特征的选择
  • 最大熵隐马模型则解决了隐马的问题,可以任意选择特征,但由于其在每一节点都要进行归一化,所以只能找到局部的最优值,同时也带来了标记偏见的问题,即凡是训练语料中未出现的情况全都忽略掉
  • 条件随机场则很好的解决了这一问题,他并不在每一个节点进行归一化,而是所有特征进行全局归一化,因此可以求得全局的最优值。

CRF分词原理

1. CRF把分词当做字的词位分类问题,通常定义字的词位信息如下:

  • 词首,常用B表示
  • 词中,常用M表示
  • 词尾,常用E表示
  • 单子词,常用S表示

2. CRF分词的过程就是对词位标注后,将B和E之间的字,以及S单字构成分词

3. CRF分词实例:

  • 原始例句:我爱北京天安门
  • CRF标注后:我/S 爱/S 北/B 京/E 天/B 安/M 门/E
  • 分词结果:我/爱/北京/天安门

CRF分词工具包

上面介绍了CRF技术思想以及如何用于分词,下面将介绍如何在实际开发中使用CRF进行分词工作。目前常见的CRF工具包有pocket crf, flexcrf 车crf++,目前网上也有一些它们3者之间的对比报告,个人感觉crf++在易用性,稳定性和准确性等综合方面的表现最好,同时在公司的项目开发中也一 直在使用,因此下面将概述一下crf++的使用方法(具体细节可以到crf++官方主页去查 阅,http://crfpp.sourceforge.net/),下载地址http://download.csdn.NET/detail/u013378306/9740556

1.安装
编译器要求:C++编译器(gcc 3.0或更高)
命令:
% ./configure
% make
% su
# make install
注:只有拥有root帐号的用户才能成功安装。

2.使用
2.1训练和测试文件的格式
训练和测试文件必须包含多个tokens,每个token包含多个列。token的定义可根据具体的任务,如词、词性等。每个token必须写在一行,且各列之间用空格或制表格间隔。一个token的序列可构成一个sentence,sentence之间用一个空行间隔。
最后一列是CRF用于训练的正确的标注形式。
例如:
iphone ASCII S
是 CN S
一 CN S  >> 当前token
款 CN S
不 CN B
错 CN E
的 CN S
手 CN B
机 CN E
, PUNC S
还 CN S
能 CN S
听 CN B
歌 CN E
。PUCN S
我上面的例子每个token包含3列,分别为字本身、字类型(英文数字,汉字,标点等)和词位标记。
注意:如果每一个token的列数不一致,系统将不能正确运行。
2.2准备特征模板
使用CRF++的用户必须自己确定特征模板。
1)基本模板和宏
模板文件中的每一行代表一个template。每一个template中,专门的宏%x[row,col]用于确定输入数据中的一个token。row用于确定与当前的token的相对行数。col用于确定绝对行数。
如已知下面的输入数据:
iphone ASCII S
是 CN S
一 CN S  >> 当前token
款 CN S
不 CN B
错 CN E
的 CN S
手 CN B
机 CN E
特征模板形式为:
# Unigram
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U05:%x[-1,0]/%x[0,0]
U06:%x[0,0]/%x[1,0]
U07:%x[-1,0]/%x[1,0]
U08:%x[0,1]
U09:%x[-1,1]/%x[0,1]
# Bigram
B
2)模板类型
有两种模板类型,它们可由template的第一个字符确定。
第一种是Unigram template:第一个字符是U
这是用于描述unigram feature的模板。当你给出一个模板"U02:%x[0,0]",CRF会自动的生成一个特征函数集合(func1 ... funcN),如:
func1 = if (output = B and feature="U02:一") return 1 else return 0
func2 = if (output = M and feature="U02:一") return 1 else return 0
func3 = if (output = E and feature="U02:一") return 1  else return 0
func4 = if (output = S and feature="U02:一") return 1  else return 0
...
funcX = if (output = B and feature="U02:的") return 1  else return 0
funcY = if (output = S and feature="U02:的") return 1  else return 0
...
一个模型生成的特征函数的个数总数为L*N,其中L是输出的类别数,N是根据给定的template扩展出的unique string的数目。
第二种类型Bigram template:第一个字符是B
这 个模板用于描述bigram features。使用这个模板,系统将自动产生当前输出token与前一个输出token(bigram)的组合。产生的可区分的特征的总数是 L*L*N,其中L是输出类别数,N是这个模板产生的unique features数。当类别数很大的时候,这种类型会产生许多可区分的特征,这将会导致训练和测试的效率都很低下。
3)使用标识符区分相对位置
如果用户需要区分token的相对位置时,可以使用标识符。
比如在下面的例子中,宏"%x[-2,0]"和"%x[1,0]"都代表“北”,但是它们又是不同的“北“。
北 CN B
京 CN E
的 CN S  >> 当前token
北 CN S
部 CN S
为了区分它们,可以在模型中加入一个唯一的标识符(U00: 或 U03:),即:
U00:%x[-2,0]
U03:%x[1,0]
在这样的条件下,两种模型将被认为是不同的,因为他们将被扩展为”U00:北“和”U03:北”。只要你喜欢,你可以使用任何标识符,但是使用数字序号区分更很有用,因为它们只需简单的与特征数相对应。
3.训练(编码)
使用crf_learn 命令:
% crf_learn template_file train_file model_file
其中,template_file和train_file需由使用者事先准备好。crf_learn将生成训练后的模型并存放在model_file中。
一般的,crf_learn将在STDOUT上输出下面的信息。还会输出其他的和LBFGS迭代相关的信息。
% crf_learn template_file train_file model_file
CRF++: Yet Another CRF Tool Kit
Copyright (C) 2005 Taku Kudo, All rights reserved.
reading training data:
Done! 0.32 s
Number of sentences:          77
Number of features:           32856
Freq:                         1
eta:                          0.0001
C(sigma^2):                   10
iter=0 terr=0.7494725738 serr=1 obj=2082.968899 diff=1
iter=1 terr=0.1671940928 serr=0.8831168831 obj=1406.329356 diff=0.3248438053
iter=2 terr=0.1503164557 serr=0.8831168831 obj=626.9159973 diff=0.5542182244
其中:
iter:迭代次数
terr:和tags相关的错误率(错误的tag数/所有的tag数)
serr:与sentence相关的错误率(错误的sentence数/所有的sentence数)
obj:当前对象的值。当这个值收敛到一个确定的值是,CRF模型将停止迭代
diff:与上一个对象值之间的相对差
有两个主要的参数用于控制训练条件:
-c float:使用这个选项,你可以改变CRF的hyper-parameter。当取一个极大的C值,CRF将可能对训练数据产生过拟合 (overfitting)现象。这个参数将会调节overfitting和underfitting之间的平衡。结果将会对参数带来有意义的影响。使用 者可以通过使用held-out data或者更多的通用模型的选择方法如十字交叉验证法(cross validation)获得最有的值。
-f NUM:这个参数用于设置特征的cut-off阈值。CRF++训练时只使用出现次数不少于NUM次数的特征进行训练。默认值为1。当使用CRF++训练大规模数据时,单一特征的数量将达到数百万,此时选择这个参数很有用。
这里有一个使用这两个参数的例子:
% crf_learn -f 3 -c 1.5 template_file train_file model_file
4.测试(解码)
使用crf_test 命令:
% crf_test -m model_file test_files ...
其中,model_file是crf_learn创建的。在测试过程中,使用者不需要指定template file,因为,mode file已经有了template的信息。test_file是你想要标注序列标记的测试语料。这个文件的书写格式应该与训练文件一致。
下面是一个crf_test输出的例子:
% crf_test -m model test.data
Rockwell        NNP     B       B
International   NNP     I       I
Corp.   NNP     I       I
's      POS     B       B
Tulsa   NNP     I       I
unit    NN      I       I
..
其中,最后一列是模型估计的tag。如果第三列是标准的tag,则可以通过简单的比较第三列和第四列之间的差别计算出准确率。
详细的层次(verbose level)
-v选项:将设置verbose level。默认值为0。通过增加层次,你可以从CRF++获得额外的信息。
层次1:
你 可以对每个tag使用边缘概率(marginal probabilities)(这是一种对输出tag的confidence measure),对输出使用条件概率(conditional probably)(针对整个输出的confidence measure)。
例如:
% crf_test -v1 -m model test.data| head
# 0.478113
Rockwell        NNP     B       B/0.992465
International   NNP     I       I/0.979089
Corp.   NNP     I       I/0.954883
's      POS     B       B/0.986396
Tulsa   NNP     I       I/0.991966
...
其中,第一行的"# 0.478113"即是输出的条件概率,而且每一个输出tag各自含有一个概率,表示形式如“B/0.992465”。
层次2:
你可以对所有的其他候选求边缘概率。
例如:
% crf_test -v2 -m model test.data
# 0.478113
Rockwell        NNP     B       B/0.992465      B/0.992465      I/0.00144946    O/0.00608594
International   NNP     I       I/0.979089      B/0.0105273     I/0.979089      O/0.0103833
Corp.   NNP     I       I/0.954883      B/0.00477976    I/0.954883      O/0.040337
's      POS     B       B/0.986396      B/0.986396      I/0.00655976    O/0.00704426
Tulsa   NNP     I       I/0.991966      B/0.00787494    I/0.991966      O/0.00015949
unit    NN      I       I/0.996169      B/0.00283111    I/0.996169      O/0.000999975
..
N-best outputs
-n选项:使用这个选项将获得N-best结果,它根据CRF计算出的条件概率排序得到。当选择了N-best结果,CRF++会自动添加一行,形式为“# N prob”,其中N是排序后的输出结果,从0开始。prob表示output的条件概率。
需要注意的是,如果CRF++不能找到足够的N条路径是,它将放弃列举N-best结果。这种情况在所给的句子很短的情况下常出现。
CRF++使用前向Viterbi和后向A*搜索相结合的方法。这种结合适应了n-best结果的需求。
下面是一个N-best结果的例子:
% crf_test -n 20 -m model test.data
# 0 0.478113
Rockwell        NNP     B       B
International   NNP     I       I
Corp.   NNP     I       I
's      POS     B       B
...
# 1 0.194335
Rockwell        NNP     B       B
International   NNP     I       I

目录
相关文章
|
1月前
|
自然语言处理 区块链 Python
传统的序列模型CRF与HMM区别
传统的序列模型CRF与HMM区别
|
6月前
|
机器学习/深度学习 自然语言处理 算法
LSTM-CRF模型详解和Pytorch代码实现
在快速发展的自然语言处理领域,Transformers 已经成为主导模型,在广泛的序列建模任务中表现出卓越的性能,包括词性标记、命名实体识别和分块。在Transformers之前,条件随机场(CRFs)是序列建模的首选工具,特别是线性链CRFs,它将序列建模为有向图,而CRFs更普遍地可以用于任意图。
159 0
|
8月前
|
PyTorch 算法框架/工具 Python
针对pytorch中的CRF不存在属性
为了更加便捷地使用CRF模块,有大佬真们对CRF封装起来,方便大家使用。关于CRF的左右,本博客不具体介绍,有兴趣的朋友可以百度查找。
192 0
|
11月前
|
自然语言处理
|
机器学习/深度学习 PyTorch 算法框架/工具
什么是LSTM模型,什么是BILSTM模型,给出 pytorch案例
LSTM模型是一种循环神经网络模型,它在处理序列数据时能够有效地解决梯度消失和梯度爆炸的问题。LSTM模型引入了门机制(如遗忘门、输入门和输出门),以便在序列中选择性地保存或遗忘信息。这些门可以根据输入数据自适应地学习。 BILSTM模型是一种双向LSTM模型,它包含两个LSTM模型,一个正向模型和一个反向模型。正向模型按照时间顺序读取输入序列,而反向模型按照相反的顺序读取输入序列。这使得BILSTM模型能够同时考虑过去和未来的上下文信息,因此通常比单向LSTM模型表现更好。
655 0
|
算法 数据可视化 数据挖掘
高斯混合模型 GMM 的详细解释
高斯混合模型(后面本文中将使用他的缩写 GMM)听起来很复杂,其实他的工作原理和 KMeans 非常相似,你甚至可以认为它是 KMeans 的概率版本。 这种概率特征使 GMM 可以应用于 KMeans 无法解决的许多复杂问题。
156 0
|
机器学习/深度学习
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(二)
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(二)
164 0
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(二)
|
机器学习/深度学习
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(一)
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(一)
167 1
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(一)
|
机器学习/深度学习 定位技术
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(三)
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(三)
264 2
DNN、CNN和RNN的12种主要dropout方法的数学和视觉解释(三)
|
算法 数据挖掘 PyTorch
Yolo系列 | Yolov4v5的模型结构与正负样本匹配
Yolo系列 | Yolov4v5的模型结构与正负样本匹配
758 0
Yolo系列 | Yolov4v5的模型结构与正负样本匹配