何为大数据架构?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据架构是用以提取和处理海量数据(一般称之为“大数据”)的整体系统,因而能够针对业务目的进行分析整理。该架构可视作基于机构业务需求的大数据解决方案的蓝图。大数据架构旨在处理下列类别的业务:•批量处理大数据源。

大数据架构是用以提取和处理海量数据(一般称之为“大数据”)的整体系统,因而能够针对业务目的进行分析整理。该架构可视作基于机构业务需求的大数据解决方案的蓝图。

大数据架构旨在处理下列类别的业务:

•批量处理大数据源。

•实时处理大数据。

•分析预测和机器学习。

大数据架构的好处

可用以分析的数据量每日都在增长。并且,流媒体资源比过去更多,其中包括流量传感器、健康传感器、事务日志和活动日志中提供的数据。但拥有数据仅是业务成功的一半。公司还必须能够理解数据,并及时应用它来影响重要决策。应用大数据架构能够帮助公司减少财力并做出重要决策,其中包括:

•控制成本。在存储大批量数据时,Hadoop和基于云计算的分析等大数据技术能够明显地节省成本。

•做出更快、更好的决策。应用大数据架构的流组件,公司能够及时做出决策。

•预测未来需求并建立新品。大数据能够协助公司考量客户需求并使用预测分析未来发展趋势。

大数据架构的挑战

假如做得好,大数据架构能够为公司节约资金,并协助分折关键的趋势,但它并不是沒有挑战。在处理大数据时,必须留意下列问题:

(1)数据质量

不论什么时候使用各种数据源,数据质量都是一项挑战。这代表着公司需要做的工作是保障数据格式匹配,而且沒有重复数据或缺失数据将会使分析不可信。公司需要先分析和准备数据,随后才能将其与其它数据一同开展分析。

(2)扩展

大数据的价值在于其数目。可是,这也将会变成一个关键难题。假如公司并未设计架构以进行扩展,则或者会很快碰到问题。最先,假如公司不计划支持基础建设,那样支持基础设施的成本就会增多。这将会会给公司的预决算产生负担。另一方面,假如公司不准备进行扩展,那样其性能将会会明显下降。这两个问题都应当在构建大数据架构的规划环节取得解决。

(3)安全性

尽管大数据能够为公司提供对数据的深层次了解,但保护这些数据依然有着挑战性。欺诈者和黑客或者对公司的数据十分感兴趣,他们或者会试着添加自己的假造数据或浏览公司的数据以获得敏感信息。互联网犯罪嫌疑人能够制做数据并将其导入其数据湖。比如,假定公司追踪网页单击频次以发觉流量中的不正常模式,并在其网页上搜索犯罪活动,互联网犯罪嫌疑人能够渗透公司的系统,在公司的大数据中能够寻找大批量的敏感信息,假如公司沒有保护周围环境,加密数据并努力匿名化数据以清除敏感信息的话,互联网犯罪嫌疑人可能会发掘其数据以获得这些信息。

大数据架构因企业的基础设施和需求而异,但一般包括以下组件:

•数据源。所有大数据架构都从源代码开始。这可以包含来源于数据库的数据、来自实时源(如物联网设备)的数据,及其从应用程序(如Windows日志)生成的静态文件。

•实时消息接收。假如有实时源,则需要在架构中构建一种机制来摄入数据。

•数据存储。公司需要存储将通过大数据架构处理的数据。一般而言,数据将存储在数据湖中,这是一个可以轻松扩展的大型非结构化数据库。

•批处理和实时处理的组合。公司需要同时处理实时数据和静态数据,因而应在大数据架构中内置批量和实时处理的组合。这是由于能够应用批处理有效地处理大批量数据,而实时数据需要立刻处理才能够带来价值。批处理涉及到长期运转的作业,用于筛选、聚合和准备数据开展分析。

•分析数据存储。准备好要分析的数据后,需要将它们放到一个位置,便于对整个数据集开展分析。分析数据储存的必要性在于,公司的全部数据都聚集在一个位置,因而其分析将是全面的,而且针对分析而非事务进行了优化。这可能采用基于云计算的数据仓库或关系数据库的形式,具体取决于公司的需求。

•分析或报告工具。在摄入和处理各类数据源之后,公司需要包含一个分析数据的工具。一般而言,公司将使用BI(商业智能)工具来完成这项工作,而且或者需要数据科学家来探索数据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
4月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
293 1
|
4月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
90 3
|
2月前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
652 8
|
3月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
399 3
【赵渝强老师】基于大数据组件的平台架构
|
2月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
74 0
|
4月前
|
SQL 存储 分布式计算
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
67 9
|
4月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
325 1
|
4月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
108 3
|
4月前
|
消息中间件 分布式计算 druid
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
121 2