智能制造下一个风口:工业智能

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 工业智能

导 读 

大规模的数据应用和平台架构在金融、电信等行业经历了充分的验证和演进,加上政策的催化作用,构成了工业智能拐点到来的先决条件——


工业一般分为流程工业和离散工业。两者最大的差异在生产的自动化程度、数据的可得性和工业的复杂度,而最大的共性在于,每一个场景都需求各异,进入任何一个细分领域都需要有足够深厚的行业knowhow和上下游资源整合能力。

95ffcc98e632d03fc588dd1dcd19fe9c3682131c



智能,可以理解为数据化以及建立于此之上的AI。以产线自动化为始,多源异构的工业数据被采集、流转、分析并帮助形成决策和控制,端到端的解决方案就形成了当前行业player的典型画像。


07feef6ec75d583976787d0dd206b09e44ff7159

为什么是工业智能?

蓝海

工业尤其是制造业的GDP总量远高于零售、金融、建筑等行业。而工业领域每天产生的有效数据量其实不亚于BAT等互联网公司,一个大规模的工厂每天产生的数据量甚至能达到几十亿到上百亿条。

壁垒

虽然工业场景每天产生高频、海量的数据,但是大量的原始数据本身并没有直接意义,且有可能产生大规模时延和占据大量带宽。我们不仅需要在某些场景做实时的监控和分析,也需要把更多数据采集到云端做更多维和更长期的经济效益及价值分析,这是云计算的价值。而云计算+边缘计算,这是比传统消费互联网更细的颗粒度和更复杂的架构,这也意味着更高的壁垒

拐点

互联网一条逻辑叫做“Copy to China”,“Copy to 工业”是同样的道理。大规模的数据应用和平台架构在金融、电信等行业经历了充分的验证和演进,加上中国制造2025在政策一侧的催化作用,构成了拐点成立的先决条件。

工业智能的玩家画像

现阶段的用户需要的不是单个产品,而是端到端的整体解决方案。一个合格的工业智能公司,应该具备整体解决方案的构造能力。


首先,用户需求永远是第一位,不满足需求的技术都是伪命题。此外,一套好的解决方案从一个完美的架构开始。对于工业场景而言,从内、外部多源数据的整合开始,到云+端的平台架构,知识库的建立,合适模型的选择,再到反向决策和控制,只有完整打通,才能形成闭环。


整体来说,工业智能呈现一横(整体架构)+N纵(多个细分行业)的格局。


工业智能的路径选择

对于工业领域的大B客户来讲,现阶段需要的不是单个产品,而是端到端的整体解决方案。这虽说是现状,其实也是工业创业者的终极目标。然而路径选择很重要。


关于发展路径,业内主流认为自动化-(数据化)-信息化-智能化是工业用户进阶的合理顺序,并且前一阶段是后一阶段开始的必要条件。因此国内工业智能领域的企业在很长一段时间内只关注自动化领域的机会,甚至将工业智能等同为“机器人”或者“工业自动化”。从用户现场的大量实践来看,这几个阶段存在着显著的先后顺序,但同时交叉渗透,迭代进行。


具体来看,离散制造行业大部分客户自动化程度不够,所以优先完成产线自动化。一些厂商以工业以太网和板卡实现设备互联,打通设备级数据,经过MES反馈到平台层,在不更换原有工控设备的基础上实现初步物联,用户接受度很高,业绩每年翻几番增长,趋势非常明显。这一类模式,我们可以称之为「以M2M设备物联为核心的系统集成」。


更进一步的需求,来自于离散制造业的超大型头部客户和流程制造行业的绝大多数客户,由于产线自动化程度本身较高,我们观察到这类客户对于信息化的接受程度本身也较高。


另外有一类厂商可以直接从顶层设计切入,在平台层以工业大数据平台或者场景化的AI模型服务用户,实时的解决业务问题。反过来在数据采集层,在一些数据不完善的局部加装传感器,加装智能化的检测设备,甚至于做小段的产线集成等等。这一类模式,用户接受度往往更高,这意味着项目的溢价往往也更高,我们可以称之为「以数据应用为核心的系统集成」。


所以,我们可以看到三条发展路径,面对不同的客户,不同的场景,不同的发展阶段,有不同的路径选择:

一、以产线自动化为核心的系统集成;

二、以M2M设备物联为核心的系统集成;

三、以数据应用为核心的系统集成。


当然,殊途同归,最终都是给用户提供整体解决方案,以满足用户需求为核心。

工业智能之工业大数据

首先,数据在哪里?

▲一类是管理数据:结构化的SQL数据为主,如产品属性、工艺、生产、采购、订单、服务等数据,这类数据一般来自企业的ERP、SCM、PLM甚至MES等系统,数据量本身不大,却具有很大的挖掘价值;

▲另一类则是机器运行和IoT的数据:以非结构化、流式数据居多,如设备工况(压力、温度、振动、应力等)、音视频、日志文本等数据,这类数据一般采集自设备PLC、SCADA以及部分外装传感器,数据量很大,采集频率高,需要结合边缘计算在本地做一些预处理。


总的来讲,由于场景的割裂和分散,工业数据本身具有量大、多源、异构、实时性要求高等特点,而且随着未来280亿设备逐步接入,这些特性将会进一步加强,这是做工业大数据服务的核心难点之一,和互联网大数据不仅量级不同,结构不同,应用也完全不同。


其次,基于这些工业数据,平台层应该提供哪些服务?

▲完整的协议解析:数据采集首先要完成工业协议的打通。以应用层协议为例,EtherNet/IP和PROFINET的市场占有率最大,其次是EtherCAT、Modbus-TCP和EtherNetPOWERLINK;


▲标准化的数据整合:采集上来的数据要做统一的主数据管理,第一步是建立标准。一般来讲,我们先要用ISO或其他业内标准,制定统一的编码、结构、流转方式和属性,确保数据的一致性,这一点非常重要。


在项目实施的历程中,逐步积累行业知识库、合适的算法组件以及相关机理模型,这一点也很重要,这是从数据标准进化到业务标准化的关键一步,是为实现真正的产品层面的微服务化打下基础。


强大的PaaS支持:工业数据本身的特殊性导致平台必须要有强大的中层支撑能力。我们以时序数据库为例,它是设备工况和传感器数据的典型品种。这类数据频率高、量大,用传统关系型数据库处理,需要每次把所有值拉出来计算,吞吐量极大,性能很差。所以,一个高压缩、高性能的时序数据库,就是平台层必备的能力之一。


最后,我们应该做哪些应用?

▲设备级:质量控制。在工业智能时代,如果我们能够采集到合适的实时数据,结合该设备所适用的机理模型,就有可能用机器学习的方法挖掘出产品质量与关键数据之间的关联或因果关系,也就有可能实现实时在线的质量控制和故障预警,如果数据频率能对工艺流程形成完美包络,我们还有可能实现最大限度的效率提升。


▲厂级:计划排产。工业智能的最终目的是要实现大规模的个性化定制,即C2M。这一问题的目标是实现当时当地的产能最优,约束条件来自企业的产线设备、人员、产品属性、供应链数据等等,通过历史数据的学习和训练,不难形成一个较好的预测模型。


这一模型能根据产线和工厂的实时数据动态分析,动态调整,以帮助企业实现准确把控,最大化经济效益。


在可以预见的未来,随着数据的完整性和可靠性越来越高,场景越来越丰富,数据应用层面会诞生相当多的优先企业,他们帮助工业用户降低成本,提高效率,能解决实实在在的业务问题。

专家合作:nq1919

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
传感器 数据采集 安全
智能驾驶行业如何把科技和保险结合
智能驾驶行业如何把科技和保险结合
84 0
|
大数据 工业大脑 新制造
阿里云ET工业大脑助力智能制造转型
本文由阿里云工业大脑首席架构师黄桦在苏州云栖大会分享,当新制造已经上升为国家战略,工业产业升级势在必行。如何让科技应用于工业转型,让我们走进阿里云ET工业大脑一探究竟。
3555 0
|
人工智能 监控 大数据
李杰:人工智能与工业4.0在智能制造的应用
至顶网CIO与应用频道 07月20日 北京消息:在2017中国大数据应用大会上,美国辛辛那提大学特聘讲座教授、美国白宫信息物理系统与美国挑战项目顾问李杰,分享了对工业大数据,以及人工智能怎么改进工业大数据分析的见解。
1999 0