书籍:Python深度学习项目 Python Deep Learning Projects - 2018.Pdf

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 简介 Python深度学习项目 使用Python和Keras掌握深度学习和神经网络架构的富有洞察力的项目 主要特点 探索跨计算机视觉,自然语言处理(NLP)和图像处理的深度学习 探索深度神经网络及其部署培训的最佳实践 访问流行的深度学习模型以及广泛使用的神经网络架构 图书说明 深度学习已逐渐彻底改变人工智能的各个领域,使应用程序开发更容易。

简介

图片.png

Python深度学习项目

使用Python和Keras掌握深度学习和神经网络架构的富有洞察力的项目

主要特点

  • 探索跨计算机视觉,自然语言处理(NLP)和图像处理的深度学习
  • 探索深度神经网络及其部署培训的最佳实践
  • 访问流行的深度学习模型以及广泛使用的神经网络架构

图书说明

深度学习已逐渐彻底改变人工智能的各个领域,使应用程序开发更容易。

Python深度学习项目提供了在计算语言学和计算机视觉领域实现复杂深度学习项目所需的所有知识。这些项目中的每一个都是独一无二的,可帮助您逐步掌握主题。您将学习如何使用递归神经网络(RNN)模型实现文本分类器系统并对其进行优化,以了解在实施简单深度学习系统时可能遇到的缺点。

同样,您将发现如何使用seq-to-seq模型和语言建模开发各种项目,包括单词矢量表示,开放域问题解答和构建聊天机器人。除此之外,您还将通过一系列引人入胜的项目涵盖高级概念,例如正则化,梯度限幅,梯度归一化和双向RNN。

在本书的最后,您将获得以直接的方式和有效的方式开发自己的深度学习系统的知识

参考资料

你会学到什么

  • 在Amazon Web Services(AWS)上设置深度学习开发环境
  • 应用基于GPU的实例以及深度学习AMI
  • 实现seq-to-seq网络,用于建模自然语言处理(NLP)
  • 开发端到端语音识别系统
  • 构建用于图像的逐像素语义标记的系统
  • 创建一个生成图像及其区域的系统

这本书读者

如果您想深入了解深度学习,数据科学和人工智能,Python深度学习项目适合您。本书也适合那些想要深入学习并开发自己的AI项目的人。

假设您对Python编程有充分的了解

目录

  • 建立深度学习环境
  • 用回归训练神经网络进行预测
  • 单词矢量表示使用Word2VEC(skip-gram)进行单词预测
  • 构建开放域问答的NLP管道
  • 用于构建聊天机器人的序列到序列模型
  • 使用Bi-LSTM进行内容创建的生成语言建模
  • 使用DeepSpeech2构建语音识别
  • 使用ConvNets进行手写数字分类
  • 使用OpenCV和TensorFlow进行实时对象检测
  • 使用OpenFace和群集构建人脸识别
  • 使用NeuralTalk模型自动化图像标题
  • 使用ConvNets对3D模型进行姿态估计
  • 使用GAN进行样式转换的图像翻译
  • 培养具有深度强化学习能力的机器人
  • 深度学习职业生涯的总结和后续步骤
相关文章
|
22天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
125 59
|
17天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
17天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
56 5
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
89 68
|
12天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
48 13
|
8天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
30 8
|
19天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
36 2
|
23天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
55 6
|
18天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
55 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
18天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
62 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型