MySQL索引优化看这篇文章就够了!

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 不容错过~

阅读本文大概需要 5 分钟。

来源:cnblogs.com/songwenjie/p/9410009.html

本文主要讨论MySQL索引的部分知识。将会从MySQL索引基础、索引优化实战和数据库索引背后的数据结构三部分相关内容,下面一一展开(本文图片可点开放大)。

一、MySQL索引基础

首先,我们将从索引基础开始介绍一下什么是索引,分析索引的几种类型,并探讨一下如何创建索引以及索引设计的基本原则。

此部分用于测试索引创建的user表的结构如下:

1. 什么是索引?

“索引(在MySQL中也叫“键key”)是存储引擎快速找到记录的一种数据结构。”

——《高性能MySQL》

我们需要知道索引其实是一种数据结构,其功能是帮助我们快速匹配查找到需要的数据行,是数据库性能优化最常用的工具之一。其作用相当于超市里的导购员、书本里的目录。

2. 索引类型

可以使用SHOW INDEX FROM table_name;查看索引详情:

主键索引 PRIMARY KEY:它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引。注意:一个表只能有一个主键。

唯一索引 UNIQUE:唯一索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。可以通过ALTER TABLE table_name ADD UNIQUE (column);创建唯一索引:

可以通过ALTER TABLE table_name ADD UNIQUE (column1,column2);创建唯一组合索引:

普通索引 INDEX:这是最基本的索引,它没有任何限制。可以通过ALTER TABLE table_name ADD INDEX index_name (column);创建普通索引:

组合索引 INDEX:即一个索引包含多个列,多用于避免回表查询。可以通过ALTER TABLE table_name ADD INDEX index_name(column1,column2, column3);创建组合索引:

全文索引 FULLTEXT:也称全文检索,是目前搜索引擎使用的一种关键技术。可以通过ALTER TABLE table_name ADD FULLTEXT (column);创建全文索引:

索引一经创建不能修改,如果要修改索引,只能删除重建。可以使用

DROP INDEX index_name ON table_name;删除索引。

3、索引设计的原则

1)适合索引的列是出现在where子句中的列,或者连接子句中指定的列;

2)基数较小的类,索引效果较差,没有必要在此列建立索引;

3)使用短索引,如果对长字符串列进行索引,应该指定一个前缀长度,这样能够节省大量索引空间;

4)不要过度索引。索引需要额外的磁盘空间,并降低写操作的性能。在修改表内容的时候,索引会进行更新甚至重构,索引列越多,这个时间就会越长。所以只保持需要的索引有利于查询即可。

二、MySQL索引优化实战

上面我们介绍了索引的基本内容,这部分我们介绍索引优化实战。在介绍索引优化实战之前,首先要介绍两个与索引相关的重要概念,这两个概念对于索引优化至关重要。

此部分用于测试的user表结构:

1、索引相关的重要概念

基数:单个列唯一键(distict_keys)的数量叫做基数。

SELECT COUNT(DISTINCT name),COUNT(DISTINCT gender) FROM user;

user表的总行数是5,gender列的基数是2,说明gender列里面有大量重复值,name列的基数等于总行数,说明name列没有重复值,相当于主键。

返回数据的比例:user表中共有5条数据:

SELECT * FROM user;

查询满足性别为0(男)的记录数:

那么返回记录的比例数是:

同理,查询name为'swj'的记录数:

返回记录的比例数是:

现在问题来了,假设name、gender列都有索引,那么SELECT * FROM user WHERE gender = 0; SELECT * FROM user WHERE name = 'swj';都能命中索引吗?

user表的索引详情:

SELECT * FROM user WHERE gender = 0;没有命中索引,注意filtered的值就是上面我们计算的返回记录的比例数。

SELECT * FROM user WHERE name = 'swj';命中了索引index_name,因为走索引直接就能找到要查询的记录,所以filtered的值为100。

因此,返回表中30%内的数据会走索引,返回超过30%数据就使用全表扫描。当然这个结论太绝对了,也并不是绝对的30%,只是一个大概的范围。

回表:当对一个列创建索引之后,索引会包含该列的键值及键值对应行所在的rowid。通过索引中记录的rowid访问表中的数据就叫回表。回表次数太多会严重影响SQL性能,如果回表次数太多,就不应该走索引扫描,应该直接走全表扫描。

EXPLAIN命令结果中的Using Index意味着不会回表,通过索引就可以获得主要的数据。Using Where则意味着需要回表取数据。

2. 索引优化实战

有些时候虽然数据库有索引,但是并不被优化器选择使用。我们可以通过SHOW STATUS LIKE 'Handler_read%';查看索引的使用情况:

Handler_read_key:如果索引正在工作,Handler_read_key的值将很高。

Handler_read_rnd_next:数据文件中读取下一行的请求数,如果正在进行大量的表扫描,值将较高,则说明索引利用不理想。

索引优化规则:

1)如果MySQL估计使用索引比全表扫描还慢,则不会使用索引。

返回数据的比例是重要的指标,比例越低越容易命中索引。记住这个范围值——30%,后面所讲的内容都是建立在返回数据的比例在30%以内的基础上。

2)前导模糊查询不能命中索引。

name列创建普通索引:

前导模糊查询不能命中索引:

EXPLAIN SELECT * FROM user WHERE name LIKE '%s%';

非前导模糊查询则可以使用索引,可优化为使用非前导模糊查询:

EXPLAIN SELECT * FROM user WHERE name LIKE 's%';

3)数据类型出现隐式转换的时候不会命中索引,特别是当列类型是字符串,一定要将字符常量值用引号引起来。

EXPLAIN SELECT * FROM user WHERE name=1;

EXPLAIN SELECT * FROM user WHERE name='1';

4)复合索引的情况下,查询条件不包含索引列最左边部分(不满足最左原则),不会命中符合索引。

name,age,status列创建复合索引:

ALTER TABLE user ADD INDEX index_name (name,age,status);

user表索引详情:

SHOW INDEX FROM user;

根据最左原则,可以命中复合索引index_name:

EXPLAIN SELECT * FROM user WHERE name='swj' AND status=1;

注意,最左原则并不是说是查询条件的顺序:

EXPLAIN SELECT * FROM user WHERE status=1 AND name='swj';

而是查询条件中是否包含索引最左列字段:

EXPLAIN SELECT * FROM user WHERE status=2 ;

5)union、in、or都能够命中索引,建议使用in。

union:

EXPLAIN SELECT*FROM user WHERE status=1

UNION ALL

SELECT*FROM user WHERE status = 2;

in:

EXPLAIN SELECT * FROM user WHERE status IN (1,2);

or:

EXPLAIN SELECT*FROM user WHERE status=1OR status=2;

查询的CPU消耗:or>in>union。

6)用or分割开的条件,如果or前的条件中列有索引,而后面的列中没有索引,那么涉及到的索引都不会被用到。

EXPLAIN SELECT * FROM payment WHERE customer_id = 203 OR amount = 3.96;

因为or后面的条件列中没有索引,那么后面的查询肯定要走全表扫描,在存在全表扫描的情况下,就没有必要多一次索引扫描增加IO访问。

7)负向条件查询不能使用索引,可以优化为in查询。

负向条件有:!=、<>、not in、not exists、not like等。

status列创建索引:

ALTER TABLE user ADD INDEX index_status (status);

user表索引详情:

SHOW INDEX FROM user;

负向条件不能命中缓存:

EXPLAIN SELECT * FROM user WHERE status !=1 AND status != 2;

可以优化为in查询,但是前提是区分度要高,返回数据的比例在30%以内:

EXPLAIN SELECT * FROM user WHERE status IN (0,3,4);

8)范围条件查询可以命中索引。范围条件有:<、<=、>、>=、between等。

status,age列分别创建索引:

ALTER TABLE user ADD INDEX index_status (status);

ALTER TABLE user ADD INDEX index_age (age);

user表索引详情:

SHOW INDEX FROM user;

范围条件查询可以命中索引:

EXPLAIN SELECT * FROM user WHERE status>5;

范围列可以用到索引(联合索引必须是最左前缀),但是范围列后面的列无法用到索引,索引最多用于一个范围列,如果查询条件中有两个范围列则无法全用到索引:

EXPLAIN SELECT * FROM user WHERE status>5 AND age<24;

如果是范围查询和等值查询同时存在,优先匹配等值查询列的索引:

EXPLAIN SELECT * FROM user WHERE status>5 AND age=24;

8)数据库执行计算不会命中索引。

EXPLAIN SELECT * FROM user WHERE age>24;

EXPLAIN SELECT * FROM user WHERE age+1>24;

计算逻辑应该尽量放到业务层处理,节省数据库的CPU的同时最大限度的命中索引。

9)利用覆盖索引进行查询,避免回表。

被查询的列,数据能从索引中取得,而不用通过行定位符row-locator再到row上获取,即“被查询列要被所建的索引覆盖”,这能够加速查询速度。

user表的索引详情:

因为status字段是索引列,所以直接从索引中就可以获取值,不必回表查询:

Using Index代表从索引中查询:

EXPLAIN SELECT status FROM user where status=1;

当查询其他列时,就需要回表查询,这也是为什么要避免SELECT*的原因之一:

EXPLAIN SELECT * FROM user where status=1;

10)建立索引的列,不允许为null。

单列索引不存null值,复合索引不存全为null的值,如果列允许为null,可能会得到“不符合预期”的结果集,所以,请使用not null约束以及默认值。

remark列建立索引:

ALTER TABLE user ADD INDEX index_remark (remark);

IS NULL可以命中索引:

EXPLAIN SELECT * FROM user WHERE remark IS NULL;

IS NOT NULL不能命中索引:

EXPLAIN SELECT * FROM user WHERE remark IS NOT NULL;

虽然IS NULL可以命中索引,但是NULL本身就不是一种好的数据库设计,应该使用NOT NULL约束以及默认值。

a. 更新十分频繁的字段上不宜建立索引:因为更新操作会变更B+树,重建索引。这个过程是十分消耗数据库性能的。

b. 区分度不大的字段上不宜建立索引:类似于性别这种区分度不大的字段,建立索引的意义不大。因为不能有效过滤数据,性能和全表扫描相当。另外返回数据的比例在30%以外的情况下,优化器不会选择使用索引。

c. 业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引。虽然唯一索引会影响insert速度,但是对于查询的速度提升是非常明显的。另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,在并发的情况下,依然有脏数据产生。

d. 多表关联时,要保证关联字段上一定有索引。

e. 创建索引时避免以下错误观念:索引越多越好,认为一个查询就需要建一个索引;宁缺勿滥,认为索引会消耗空间、严重拖慢更新和新增速度;抵制唯一索引,认为业务的唯一性一律需要在应用层通过“先查后插”方式解决;过早优化,在不了解系统的情况下就开始优化。

3. 小结

对于自己编写的SQL查询语句,要尽量使用EXPLAIN命令分析一下,做一个对SQL性能有追求的程序员。衡量一个程序员是否靠谱,SQL能力是一个重要的指标。作为后端程序员,深以为然。



·END·

程序员的成长之路

路虽远,行则必至




相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
107 22
MySQL底层概述—8.JOIN排序索引优化
MySQL索引有哪些类型?
● 普通索引:最基本的索引,没有任何限制。 ● 唯一索引:索引列的值必须唯一,但可以有空值。可以创建组合索引,则列值的组合必须唯一。 ● 主键索引:是特殊的唯一索引,不可以有空值,且表中只存在一个该值。 ● 组合索引:多列值组成一个索引,用于组合搜索,效率高于索引合并。 ● 全文索引:对文本的内容进行分词,进行搜索。
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
123 15
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
46 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
96 9
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
48 3
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
110 82

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等