大数据(一) - hadoop生态系统及版本演化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据系列文章汇总链接 - 更新到15篇HDFS:分布式存储系统(Hadoop Distributed File System):提供了高可靠性、高扩展性和高吞吐率的数据存储服务            HDFS源自于Google的GFS论文 (发表于2003年10月 ),是GFS克隆版YARN...

大数据系列文章汇总链接 - 更新到15篇

image

HDFS:分布式存储系统(Hadoop Distributed File System):提供了高可靠性、高扩展性和高吞吐率的数据存储服务
            HDFS源自于Google的GFS论文 (发表于2003年10月 ),是GFS克隆版
YARN:资源管理系统(Yet Another Resource Negotiator):负责集群资源的统一管理和调度,Hadoop 2.0新增系统,使得多种计算框架可以运行在一个集群中
MapReduce:分布式计算框架:具有易于编程、高容错性和高扩展性等优点
            MapReduce源自于Google的MapReduce论文 (发表于2004年12月),是Google MapReduce克隆版

Hive:由facebook开源,基于MR的数据仓库,数据计算使用MR,数据存储使用HDFS,Hive 定义了一种类 SQL 查询语言——HQL:类似SQL,但不完全相同
        日志分析:统计网站一个时间段内的pv、uv
Pig:由yahoo!开源,构建在Hadoop之上的数据仓库

image

Mahout:数据挖掘库,基于Hadoop的机器学习和数据挖掘的分布式计算框架,实现了三大类算法 :推荐(Recommendation) 、聚类(Clustering) 、分类(Classification)
HBase:分布式数据库,源自Google的Bigtable论文 ,发表于2006年11月 ,是Google Bigtable克隆版
Zookeeper:分布式协作服务,源自Google的Chubby论文 ,发表于2006年11月 ,是Chubby克隆版
                解决分布式环境下数据管理问题 :统一命名 、状态同步 、集群管理 、配置同步
Sqoop:数据同步工具,大数据学习交流扣 qun 74零零加4yi3八1连接Hadoop与传统数据库之间的桥梁 ,支持多种数据库,包括MySQL、DB2等 ,插拔式,用户可根据需要支持新的数据库 ;本质上是一个MapReduce程序
Flume:日志收集工具,Cloudera开源的日志收集系统
Oozie:作业流调度系统
        目前计算框架和作业类型繁多: MapReduce Java、Streaming、HQL、Pig等 
        如何对这些框架和作业进行统一管理和调度:
                不同作业之间存在依赖关系(DAG);
                周期性作业
                定时执行的作业
                作业执行状态监控与报警(发邮件、短信等)
image

Hadoop发行版本
        apache hadoop版本
        CDH:Cloudera DistributedHadoop
                    http://archive.cloudera.com/cdh5/cdh/
        HDP:Hortonworks Data Platform
                    http://zh.hortonworks.com/hdp/downloads/
建议选择公司发行版(不必面临版本某一个框架的选择问题),比如CDH或HDP ,推荐使用CDH(国内主流版本)
        更易维护和升级
        经过集成测试,不会面临版本兼容问题

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
13天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
49 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
129 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
93 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
87 1
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
413 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
58 2
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
97 1
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
92 4
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
26 4