【Spark Summit EU 2016】经验分享:将SparkR用于生产环境下的数据科学应用中

简介: 本讲义出自Heiko Korndorf在Spark Summit EU 2016上的演讲,主要分享了R语言以及现实场景下使用R语言进行数据分析的应用案例,并且将引领大家使用SparkR扩展R语言应用,并介绍了SparkR1.X和2.X架构,并介绍了这两个版本的SparkR分别如何获取。

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps

本讲义出自Heiko Korndorf在Spark Summit EU 2016上的演讲,主要分享了R语言以及现实场景下使用R语言进行数据分析的应用案例,并且将引领大家使用SparkR扩展R语言应用,并介绍了SparkR1.X和2.X架构,并介绍了这两个版本的SparkR分别如何获取。


除此之外,Heiko Korndorf还分享了如何使用SparkR将数据科学与数据工程集成到一起,将SparkR用于生产环境下的数据科学应用中,并对于Spark无限发展空间的生态系统进行了展望。


ec0e3ea27d522e88e8bc42b28c910609ad2997ab

b53591d0ddedd3b28291ba4dfe7a47a6a243cf20

ff563afcb5c5b545cf2814ea7c210e0831fee41e

31fe13d00f529e6b6bde23285c2fb90736198890

80107be83f1617fe2e2836ef41fe32c969a19df9

227592141d8d25e8a9f8fddae9e70320f8ab1c05

e61dbad6408d05aa220cd64e9db5f1be7e01c905

2aa9a7f529e063f783520d9efa6e0a20446c08e6

d9a27b644feca81b833434f59330d1a7150ad191

28d9f16e9652f804ce1dec6284474e9287f3275b

7fe70a6da4ef119f0621e0d325ec621312692e00

130b475e0c87a226fe5b17279c479ffa7792c51e

ec6db0fee7ddcf8993db8eb85f129bdbb217f06a

1d3d6d38bb3467c6180c3635df4797a7753ef1ff

acd8b8d57b513e001d71218b179e0bd40ddee4bc

febbfd4948753555d98bc876b1cc5622d02954da

636e14570cdc1a775f983b006e390459eb31bcb8

17c40a3d750b5009d82b9aac373c1c73d4755db9

92977d71ea60d542f52618764df997b117cf05b8

6ad5c42b8b5548b6fb638604b53a616672da8a03

6023bfb5905d0d4778001a53bbdf73dac6707903

相关文章
|
20天前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
102 1
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
488 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Apache Spark 的基本概念和在大数据分析中的应用
介绍 Apache Spark 的基本概念和在大数据分析中的应用
246 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
|
SQL 分布式计算 Java
Spark入门指南:从基础概念到实践应用全解析
在这个数据驱动的时代,信息的处理和分析变得越来越重要。而在众多的大数据处理框架中, Apache Spark 以其独特的优势脱颖而出。
136 0
|
分布式计算 安全 Java
SPARK 应用如何快速应对 LOG4J 的系列安全漏洞
SPARK 应用如何快速应对 LOG4J 的系列安全漏洞
|
3月前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
3月前
|
分布式计算 资源调度 测试技术
“Spark Streaming异常处理秘籍:揭秘如何驯服实时数据流的猛兽,守护你的应用稳如泰山,不容错过!”
【8月更文挑战第7天】Spark Streaming 是 Apache Spark 中的关键组件,用于实时数据流处理。部署时可能遭遇数据问题、资源限制或逻辑错误等异常。合理处理这些异常对于保持应用稳定性至关重要。基础在于理解其异常处理机制,通过 DSC 将数据流切分为 RDD。对于数据异常,可采用 try-catch 结构捕获并处理;资源层面异常需优化 Spark 配置,如调整内存分配;逻辑异常则需加强单元测试及集成测试。结合监控工具,可全面提升应用的健壮性和可靠性。
75 3
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
141 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
59 0