【行业|分析】大数据对于银行七大应用

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据和Hadoop技术非常强大,可帮助金融机构在市场上保持领先。运用了这些技术就能看到他们传输的结果。

如今,Hadoop几乎存在于各个方面,其通过利用大数据来分析信息和增加竞争力。许多金融机构和公司已经开始使用Hadoop成功地解决问题,即便他们本没有计划这样做。因为如果他们不这样做,就会面临市场份额损失的巨大风险。以下是一些特别有趣且重要的大数据和Hadoop用例。

诈骗侦测

诈骗是金融犯罪和数据泄露中成本最大的挑战之一。Hadoop分析可以帮助金融机构检测、预防和减小来自内部和外部的诈骗行为,同时降低相关成本。销售、授权、交易以及其他的数据分析点能够帮助银行识别和减少诈骗。例如,大数据技术通过提取异常行为模式,能够提醒银行信用卡或借记卡的丢失或被盗。从而给银行提供时间暂时冻结异常账户,直到联系到账户持有人为止。

风险管理

任何一家金融公司都需要准确地评估风险,而大数据解决方案就使他们能够有效地评估信贷风险。银行分析交易数据,基于模拟市场行为、评估用户和潜在用户,来确定风险和泄露。Hadoop的解决方案对风险和后果具有全面而准确的考虑,使企业能做出最好、最明智的决策。

客服中心效率优化

确保用户满意无疑是最重要的。涉及到金融业,大数据允许银行提前预测用户需求用以快速地解决问题。客服中心的数据分析提供了媒介,及时、简洁的洞察力,能够快速满足用户的需求,从而确保了效率成本甚至提高了交叉销售的成功率。

客户分类优化产品

大数据提供了一种方法从粒度级别来理解客户的需求,以至于银行和金融机构能够更有效地提供有针对性的优惠。转而,这些更加个性化的产品带来更高的接受度,提高客户的满意度,制造更高的利润和更好的客户保留。来自于社交媒体和交易的顾客详细信息则可以用来降低用户的采购成本以及周转率。

客户流失分析

大家都知道开发新客户比留住老客户的成本要高,大数据和Hadoop技术可以通过导致客户放弃的行为分析和识别模式来帮助金融公司来留住他们的客户。什么时候客户会最可能因为竞争对手而离开?什么原因?导致客户不满意的因素是什么?公司失败在哪里?这些决定如何避免客户放弃的信息都是无价的。为了迎合客户需求,使客户利益最大化,学习用正确的步骤来执行对金融公司公司来说势在必行。

情感分析

Hadoop和先进的分析工具有助于分析社会媒体来达到监控企业用户的情感,品牌或产品的目的。如果一家银行参加竞选,大数据工具可以通过名称,和标签报告以及竞选活动名称或平台报告来监控社会媒体。细节分析是富有洞察力的,银行可以基于这些根据时间,目标和人口特征的见解来准确地做出决策。

客户体验分析

作为面向客户的企业,金融机构需要利用到存于各种业务线筒仓的客户数据。这些包括投资组合管理,客户关系管理,贷款系统,呼叫中心等等。大数据可以提供更好的洞察和理解,帮助公司迎合客户需求以及前景需求。这些都可以帮助企业优化提高利润,并维护长期的客户关系。

底线是所有的企业,尤其是金融公司,需要使用大数据和Hadoop技术充分发挥他们的潜力,特别是对于每天交易所积聚的海量数据。为了保持竞争力,维持现有客户并吸引新客户,金融公司应该从今开始计划使用大数据技术,否则会因为竞争对手对这些技术的使用而失去更多的客户。那并不意味着要使用每一个可行的方式— 而只是运用对每个机构最好的可行方式。

大数据和Hadoop技术非常强大,可帮助金融机构在市场上保持领先。运用了这些技术就能看到他们传输的结果。

本内容来自 商业新知-新金融-大数据

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
112 2
|
4天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
46 15
|
10天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
9天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
21天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
28天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
68 4
|
29天前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
34 4
|
1月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
197 5
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
153 14
|
1月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用