Flink1.7.2 Dataset 并行计算源码分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: - 了解Flink处理流程(用户程序 -> JobGrapth -> ExecutionGraph -> JobVertex -> ExecutionVertex -> 并行度 -> Task(DataSourceTask,BatchTask,DataSinkTask) - 了解Execution...

Flink1.7.2 Dataset 并行计算源码分析

概述

  • 了解Flink处理流程(用户程序 -> JobGrapth -> ExecutionGraph -> JobVertex -> ExecutionVertex -> 并行度 -> Task(DataSourceTask,BatchTask,DataSinkTask)
  • 了解ExecutionVetex的构建,Task的构建,执行,任务之间的调用关系

原理分析

  • 程序会转成JobGrapth提交,JobGraph最终转为ExecutionGraph进行处理
  • ExecutionGraph会拆分成ExecutionJobVertex执行,按(DataSourceTask,BatchTask,DataSinkTask) 进行拆分

    0 = jobVertex = {InputFormatVertex@7675} "CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (org.apache.flink.runtime.operators.DataSourceTask)"
    
    1 = jobVertex = {JobVertex@7695} "Reduce (SUM(1)) (org.apache.flink.runtime.operators.BatchTask)"
    
    2 = jobVertex = {OutputFormatVertex@6665} "DataSink (collect()) (org.apache.flink.runtime.operators.DataSinkTask)"
  • ExecutionJobVertex 执行流程CREATED -> DEPLOYING ,转成对应的Task(CREATED -->DEPLOYING --> RUNNING)
  • 默认作业调度模式为:LAZY_FROM_SOURCES,只启动Source任务,下游任务是当上游任务开始给他发送数据时才开始

    • 刚开始,只有DataSourceTask对应的ExecutionJobVertex的 jobVertex.inputs 为空(元素个数0个),所以只对DataSourceTask进行调度,部署,任务运行
    • 随着DataSourceTask开始处理,就会产生中间数据,这时候通过输出数据,按key进行分区,分到对应的BatchTask分区数据,这个时候BatchTask就开始调度,部署,任务运行
    • 随着BatchTask开始处理,就会产生中间数据,这时候通过输出数据,按key进行分区,分到对应的DataSinkTask分区数据,这个时候DataSinkTask就开始调度,部署,任务运行
    • 由于后面的任务依赖前边的任务,就不会一开始就运行所有的任务,串行到,只有该任务有上游的数据发送过来,该任务才会启动,运行,换句话说,就是下游的任务是不启动的,只有上游的任务发送数据过来时,才开始启动,运行,这样节省了计算资源
  • 有几个并行度,ExecutionJobVertex 会转成对应的几个ExecutionVertex,ExecutionVertex 是会转化成Task来运行,ExecutionVertex中并行度通过subTaskIndex来区分,第一个subTaskIndex=0 ,第二个subTaskIndex = 1

输入数据

c a a
b c a

程序

  • WordCount.scala进行单词统计
package com.opensourceteams.module.bigdata.flink.example.dataset.worldcount

import com.opensourceteams.module.bigdata.flink.common.ConfigurationUtil
import org.apache.flink.api.scala.ExecutionEnvironment


/**
  * 批处理,DataSet WordCount分析
  */
object WordCountRun {


  def main(args: Array[String]): Unit = {

    //调试设置超时问题
    val env : ExecutionEnvironment= ExecutionEnvironment.createLocalEnvironment(ConfigurationUtil.getConfiguration(true))
    env.setParallelism(2)

    val dataSet = env.readTextFile("file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt")


    import org.apache.flink.streaming.api.scala._
    val result = dataSet.flatMap(x => x.split(" ")).map((_,1)).groupBy(0).sum(1)



    result.print()




  }

}

源码分析

JobMaster

JobMaster

  • new JobMaster()
  • 把JobGraph 转换为ExecutionGrapth

    this.executionGraph = createAndRestoreExecutionGraph(jobManagerJobMetricGroup);
public JobMaster(
            RpcService rpcService,
            JobMasterConfiguration jobMasterConfiguration,
            ResourceID resourceId,
            JobGraph jobGraph,
            HighAvailabilityServices highAvailabilityService,
            SlotPoolFactory slotPoolFactory,
            JobManagerSharedServices jobManagerSharedServices,
            HeartbeatServices heartbeatServices,
            BlobServer blobServer,
            JobManagerJobMetricGroupFactory jobMetricGroupFactory,
            OnCompletionActions jobCompletionActions,
            FatalErrorHandler fatalErrorHandler,
            ClassLoader userCodeLoader) throws Exception {

        super(rpcService, AkkaRpcServiceUtils.createRandomName(JOB_MANAGER_NAME));

        final JobMasterGateway selfGateway = getSelfGateway(JobMasterGateway.class);

        this.jobMasterConfiguration = checkNotNull(jobMasterConfiguration);
        this.resourceId = checkNotNull(resourceId);
        this.jobGraph = checkNotNull(jobGraph);
        this.rpcTimeout = jobMasterConfiguration.getRpcTimeout();
        this.highAvailabilityServices = checkNotNull(highAvailabilityService);
        this.blobServer = checkNotNull(blobServer);
        this.scheduledExecutorService = jobManagerSharedServices.getScheduledExecutorService();
        this.jobCompletionActions = checkNotNull(jobCompletionActions);
        this.fatalErrorHandler = checkNotNull(fatalErrorHandler);
        this.userCodeLoader = checkNotNull(userCodeLoader);
        this.jobMetricGroupFactory = checkNotNull(jobMetricGroupFactory);

        this.taskManagerHeartbeatManager = heartbeatServices.createHeartbeatManagerSender(
            resourceId,
            new TaskManagerHeartbeatListener(selfGateway),
            rpcService.getScheduledExecutor(),
            log);

        this.resourceManagerHeartbeatManager = heartbeatServices.createHeartbeatManager(
                resourceId,
                new ResourceManagerHeartbeatListener(),
                rpcService.getScheduledExecutor(),
                log);

        final String jobName = jobGraph.getName();
        final JobID jid = jobGraph.getJobID();

        log.info("Initializing job {} ({}).", jobName, jid);

        final RestartStrategies.RestartStrategyConfiguration restartStrategyConfiguration =
                jobGraph.getSerializedExecutionConfig()
                        .deserializeValue(userCodeLoader)
                        .getRestartStrategy();

        this.restartStrategy = RestartStrategyResolving.resolve(restartStrategyConfiguration,
            jobManagerSharedServices.getRestartStrategyFactory(),
            jobGraph.isCheckpointingEnabled());

        log.info("Using restart strategy {} for {} ({}).", this.restartStrategy, jobName, jid);

        resourceManagerLeaderRetriever = highAvailabilityServices.getResourceManagerLeaderRetriever();

        this.slotPool = checkNotNull(slotPoolFactory).createSlotPool(jobGraph.getJobID());

        this.slotPoolGateway = slotPool.getSelfGateway(SlotPoolGateway.class);

        this.registeredTaskManagers = new HashMap<>(4);

        this.backPressureStatsTracker = checkNotNull(jobManagerSharedServices.getBackPressureStatsTracker());
        this.lastInternalSavepoint = null;

        this.jobManagerJobMetricGroup = jobMetricGroupFactory.create(jobGraph);
        this.executionGraph = createAndRestoreExecutionGraph(jobManagerJobMetricGroup);
        this.jobStatusListener = null;

        this.resourceManagerConnection = null;
        this.establishedResourceManagerConnection = null;
    }

ExecutionGraph

ExecutionGraph.scheduleForExecution()

  • 负责Execution的调度,也就是负责把ExecutionGrapth转成ExecutionJobVertex,ExecutionJobVertex转成ExecutionVertex,再转成任务,这是真正的开始逻辑的地方
  • 更新当前Job的状态,即更新ExecutionGraph的状态,从CREATED更新到RUNNING

    transitionState(JobStatus.CREATED, JobStatus.RUNNING)
    • INFO级别日志
    Job Flink Java Job at Mon Mar 11 18:57:37 CST 2019 (f24b82ed1ec3e1c90455c342a9dfc21e) switched from state CREATED to RUNNING.
  • 默认的作业调度模式 LAZY_FROM_SOURCES,

    • LAZY_FROM_SOURCES:从sources开始安排任务。 一旦输入数据准备就绪,就开始下游任务,(刚开始只有Sources任务,下游任务都是未开始的) ;
    • EAGER : 立即安排所有任务
  1. ScheduleMode scheduleMode = ScheduleMode.LAZY_FROM_SOURCES;

  • 调用 ExecutionGraph.scheduleLazy() //延迟调度
public void scheduleForExecution() throws JobException {

        final long currentGlobalModVersion = globalModVersion;

        if (transitionState(JobStatus.CREATED, JobStatus.RUNNING)) {

            final CompletableFuture<Void> newSchedulingFuture;

            switch (scheduleMode) {

                case LAZY_FROM_SOURCES:
                    newSchedulingFuture = scheduleLazy(slotProvider);
                    break;

                case EAGER:
                    newSchedulingFuture = scheduleEager(slotProvider, allocationTimeout);
                    break;

                default:
                    throw new JobException("Schedule mode is invalid.");
            }

            if (state == JobStatus.RUNNING && currentGlobalModVersion == globalModVersion) {
                schedulingFuture = newSchedulingFuture;

                newSchedulingFuture.whenCompleteAsync(
                    (Void ignored, Throwable throwable) -> {
                        if (throwable != null && !(throwable instanceof CancellationException)) {
                            // only fail if the scheduling future was not canceled
                            failGlobal(ExceptionUtils.stripCompletionException(throwable));
                        }
                    },
                    futureExecutor);
            } else {
                newSchedulingFuture.cancel(false);
            }
        }
        else {
            throw new IllegalStateException("Job may only be scheduled from state " + JobStatus.CREATED);
        }
    }

JobStatus

  • 作业的状态 CREATED(已创建) -> RUNNING(运行中) -> FINISHED(已完成) 等

/**
 * Possible states of a job once it has been accepted by the job manager.
 */
public enum JobStatus {

    /** Job is newly created, no task has started to run. */
    CREATED(TerminalState.NON_TERMINAL),

    /** Some tasks are scheduled or running, some may be pending, some may be finished. */
    RUNNING(TerminalState.NON_TERMINAL),

    /** The job has failed and is currently waiting for the cleanup to complete */
    FAILING(TerminalState.NON_TERMINAL),
    
    /** The job has failed with a non-recoverable task failure */
    FAILED(TerminalState.GLOBALLY),

    /** Job is being cancelled */
    CANCELLING(TerminalState.NON_TERMINAL),
    
    /** Job has been cancelled */
    CANCELED(TerminalState.GLOBALLY),

    /** All of the job's tasks have successfully finished. */
    FINISHED(TerminalState.GLOBALLY),
    
    /** The job is currently undergoing a reset and total restart */
    RESTARTING(TerminalState.NON_TERMINAL),

    /** The job has been suspended and is currently waiting for the cleanup to complete */
    SUSPENDING(TerminalState.NON_TERMINAL),

    /**
     * The job has been suspended which means that it has been stopped but not been removed from a
     * potential HA job store.
     */
    SUSPENDED(TerminalState.LOCALLY),

    /** The job is currently reconciling and waits for task execution report to recover state. */
    RECONCILING(TerminalState.NON_TERMINAL);
    
    // ----------------------------

ScheduleMode

  • 作业调度模式,即ExecutionGraph调度模式(LAZY_FROM_SOURCES,EAGER)
  • LAZY_FROM_SOURCES:从sources开始安排任务。 一旦输入数据准备就绪,就开始下游任务,(刚开始只有Sources任务,下游任务都是未开始的)
  • EAGER : 立即安排所有任务
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.runtime.jobgraph;

/**
 * The ScheduleMode decides how tasks of an execution graph are started.  
 */
public enum ScheduleMode {

    /** Schedule tasks lazily from the sources. Downstream tasks are started once their input data are ready */
    LAZY_FROM_SOURCES,

    /** Schedules all tasks immediately. */
    EAGER;
    
    /**
     * Returns whether we are allowed to deploy consumers lazily.
     */
    public boolean allowLazyDeployment() {
        return this == LAZY_FROM_SOURCES;
    }
    
}

ExecutionGraph.scheduleLazy

  • 程序会转成JobGrapth提交,JobGraph最终转为ExecutionGraph进行处理
  • ExecutionGraph会拆分成ExecutionJobVertex执行,按(DataSourceTask,BatchTask,DataSinkTask) 进行拆分

    0 = jobVertex = {InputFormatVertex@7675} "CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (org.apache.flink.runtime.operators.DataSourceTask)"
    
    1 = jobVertex = {JobVertex@7695} "Reduce (SUM(1)) (org.apache.flink.runtime.operators.BatchTask)"
    
    2 = jobVertex = {OutputFormatVertex@6665} "DataSink (collect()) (org.apache.flink.runtime.operators.DataSinkTask)"
  • ExecutionJobVertex (执行流程:CREATED -> DEPLOYING ),转成对应的Task(执行流程:CREATED -->DEPLOYING --> RUNNING)

    verticesInCreationOrder = {ArrayList@6145}  size = 3
    0 = {ExecutionJobVertex@6484} 
     stateMonitor = {Object@6608} 
     graph = {ExecutionGraph@5602} 
     jobVertex = {InputFormatVertex@6609} "CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (org.apache.flink.runtime.operators.DataSourceTask)"
     operatorIDs = {Collections$UnmodifiableRandomAccessList@6610}  size = 1
     userDefinedOperatorIds = {Collections$UnmodifiableRandomAccessList@6611}  size = 1
     taskVertices = {ExecutionVertex[2]@6612} 
     producedDataSets = {IntermediateResult[1]@6614} 
     inputs = {ArrayList@6616}  size = 0
     parallelism = 2
     slotSharingGroup = {SlotSharingGroup@6617} "SlotSharingGroup [9eb9f93248a641c71df925ec6245124a, b2e911c37d2ae462430e12812fb033ad, a2139d4cdf059b384d883251604a5f2e]"
     coLocationGroup = null
     inputSplits = {FileInputSplit[2]@6618} 
     maxParallelismConfigured = true
     maxParallelism = 2
     serializedTaskInformation = null
     taskInformationBlobKey = null
     taskInformationOrBlobKey = null
     splitAssigner = {LocatableInputSplitAssigner@6620} 
    1 = {ExecutionJobVertex@6606} 
     stateMonitor = {Object@6653} 
     graph = {ExecutionGraph@5602} 
     jobVertex = {JobVertex@6654} "Reduce (SUM(1)) (org.apache.flink.runtime.operators.BatchTask)"
     operatorIDs = {Collections$UnmodifiableRandomAccessList@6655}  size = 1
     userDefinedOperatorIds = {Collections$UnmodifiableRandomAccessList@6656}  size = 1
     taskVertices = {ExecutionVertex[2]@6658} 
     producedDataSets = {IntermediateResult[1]@6659} 
     inputs = {ArrayList@6660}  size = 1
     parallelism = 2
     slotSharingGroup = {SlotSharingGroup@6617} "SlotSharingGroup [9eb9f93248a641c71df925ec6245124a, b2e911c37d2ae462430e12812fb033ad, a2139d4cdf059b384d883251604a5f2e]"
     coLocationGroup = null
     inputSplits = null
     maxParallelismConfigured = true
     maxParallelism = 2
     serializedTaskInformation = null
     taskInformationBlobKey = null
     taskInformationOrBlobKey = null
     splitAssigner = null
    2 = {ExecutionJobVertex@6607} 
     stateMonitor = {Object@6664} 
     graph = {ExecutionGraph@5602} 
     jobVertex = {OutputFormatVertex@6665} "DataSink (collect()) (org.apache.flink.runtime.operators.DataSinkTask)"
     operatorIDs = {Collections$UnmodifiableRandomAccessList@6666}  size = 1
     userDefinedOperatorIds = {Collections$UnmodifiableRandomAccessList@6667}  size = 1
     taskVertices = {ExecutionVertex[2]@6668} 
     producedDataSets = {IntermediateResult[0]@6669} 
     inputs = {ArrayList@6670}  size = 1
     parallelism = 2
     slotSharingGroup = {SlotSharingGroup@6617} "SlotSharingGroup [9eb9f93248a641c71df925ec6245124a, b2e911c37d2ae462430e12812fb033ad, a2139d4cdf059b384d883251604a5f2e]"
     coLocationGroup = null
     inputSplits = null
     maxParallelismConfigured = true
     maxParallelism = 2
     serializedTaskInformation = null
     taskInformationBlobKey = null
     taskInformationOrBlobKey = null
     splitAssigner = null

private CompletableFuture<Void> scheduleLazy(SlotProvider slotProvider) {

        final ArrayList<CompletableFuture<Void>> schedulingFutures = new ArrayList<>(numVerticesTotal);
        // simply take the vertices without inputs.
        for (ExecutionJobVertex ejv : verticesInCreationOrder) {
            if (ejv.getJobVertex().isInputVertex()) {
                final CompletableFuture<Void> schedulingJobVertexFuture = ejv.scheduleAll(
                    slotProvider,
                    allowQueuedScheduling,
                    LocationPreferenceConstraint.ALL, // since it is an input vertex, the input based location preferences should be empty
                    Collections.emptySet());

                schedulingFutures.add(schedulingJobVertexFuture);
            }
        }

        return FutureUtils.waitForAll(schedulingFutures);
    }

ExecutionJobVertex.scheduleAll

  • 有几个并行度把ExecutionJobVertex转成对应个数的 ExecutionVertex
  • 调用ExecutionVertex.scheduleForExecution() 处理
  • Execution 状态为 CREATED
    //---------------------------------------------------------------------------------------------
    //  Actions
    //---------------------------------------------------------------------------------------------

    /**
     * Schedules all execution vertices of this ExecutionJobVertex.
     *
     * @param slotProvider to allocate the slots from
     * @param queued if the allocations can be queued
     * @param locationPreferenceConstraint constraint for the location preferences
     * @param allPreviousExecutionGraphAllocationIds set with all previous allocation ids in the job graph.
     *                                                 Can be empty if the allocation ids are not required for scheduling.
     * @return Future which is completed once all {@link Execution} could be deployed
     */
    public CompletableFuture<Void> scheduleAll(
            SlotProvider slotProvider,
            boolean queued,
            LocationPreferenceConstraint locationPreferenceConstraint,
            @Nonnull Set<AllocationID> allPreviousExecutionGraphAllocationIds) {

        final ExecutionVertex[] vertices = this.taskVertices;

        final ArrayList<CompletableFuture<Void>> scheduleFutures = new ArrayList<>(vertices.length);

        // kick off the tasks
        for (ExecutionVertex ev : vertices) {
            scheduleFutures.add(ev.scheduleForExecution(
                slotProvider,
                queued,
                locationPreferenceConstraint,
                allPreviousExecutionGraphAllocationIds));
        }

        return FutureUtils.waitForAll(scheduleFutures);
    }

ExecutionVertex.scheduleForExecution()

  • 调用 Execution.scheduleForExecution
/**
     * Schedules the current execution of this ExecutionVertex.
     *
     * @param slotProvider to allocate the slots from
     * @param queued if the allocation can be queued
     * @param locationPreferenceConstraint constraint for the location preferences
     * @param allPreviousExecutionGraphAllocationIds set with all previous allocation ids in the job graph.
     *                                                 Can be empty if the allocation ids are not required for scheduling.
     * @return Future which is completed once the execution is deployed. The future
     * can also completed exceptionally.
     */
    public CompletableFuture<Void> scheduleForExecution(
            SlotProvider slotProvider,
            boolean queued,
            LocationPreferenceConstraint locationPreferenceConstraint,
            @Nonnull Set<AllocationID> allPreviousExecutionGraphAllocationIds) {
        return this.currentExecution.scheduleForExecution(
            slotProvider,
            queued,
            locationPreferenceConstraint,
            allPreviousExecutionGraphAllocationIds);
    }

Execution.scheduleForExecution

  • 分配Slot给Execution

    final CompletableFuture<Execution> allocationFuture = allocateAndAssignSlotForExecution(
                    slotProvider,
                    queued,
                    locationPreferenceConstraint,
                    allPreviousExecutionGraphAllocationIds,
                    allocationTimeout);
  • 调用Execution.deploy()函数,部署Execution到分给的slot中
/**
     * NOTE: This method only throws exceptions if it is in an illegal state to be scheduled, or if the tasks needs
     *       to be scheduled immediately and no resource is available. If the task is accepted by the schedule, any
     *       error sets the vertex state to failed and triggers the recovery logic.
     *
     * @param slotProvider The slot provider to use to allocate slot for this execution attempt.
     * @param queued Flag to indicate whether the scheduler may queue this task if it cannot
     *               immediately deploy it.
     * @param locationPreferenceConstraint constraint for the location preferences
     * @param allPreviousExecutionGraphAllocationIds set with all previous allocation ids in the job graph.
     *                                                 Can be empty if the allocation ids are not required for scheduling.
     * @return Future which is completed once the Execution has been deployed
     */
    public CompletableFuture<Void> scheduleForExecution(
            SlotProvider slotProvider,
            boolean queued,
            LocationPreferenceConstraint locationPreferenceConstraint,
            @Nonnull Set<AllocationID> allPreviousExecutionGraphAllocationIds) {
        final Time allocationTimeout = vertex.getExecutionGraph().getAllocationTimeout();
        try {
            final CompletableFuture<Execution> allocationFuture = allocateAndAssignSlotForExecution(
                slotProvider,
                queued,
                locationPreferenceConstraint,
                allPreviousExecutionGraphAllocationIds,
                allocationTimeout);

            // IMPORTANT: We have to use the synchronous handle operation (direct executor) here so
            // that we directly deploy the tasks if the slot allocation future is completed. This is
            // necessary for immediate deployment.
            final CompletableFuture<Void> deploymentFuture = allocationFuture.thenAccept(
                (FutureConsumerWithException<Execution, Exception>) value -> deploy());

            deploymentFuture.whenComplete(
                (Void ignored, Throwable failure) -> {
                    if (failure != null) {
                        final Throwable stripCompletionException = ExceptionUtils.stripCompletionException(failure);
                        final Throwable schedulingFailureCause;

                        if (stripCompletionException instanceof TimeoutException) {
                            schedulingFailureCause = new NoResourceAvailableException(
                                "Could not allocate enough slots within timeout of " + allocationTimeout + " to run the job. " +
                                    "Please make sure that the cluster has enough resources.");
                        } else {
                            schedulingFailureCause = stripCompletionException;
                        }

                        markFailed(schedulingFailureCause);
                    }
                });

            // if tasks have to scheduled immediately check that the task has been deployed
            if (!queued && !deploymentFuture.isDone()) {
                deploymentFuture.completeExceptionally(new IllegalArgumentException("The slot allocation future has not been completed yet."));
            }

            return deploymentFuture;
        } catch (IllegalExecutionStateException e) {
            return FutureUtils.completedExceptionally(e);
        }
    }

Execution.deploy()

  • Execution 状态从SCHDULEDDEPLOYING
  • 构建部署对象

    final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(
        attemptId,
        slot,
        taskRestore,
        attemptNumber);
  • 调用TaskExecutor.submitTask
    /**
     * Deploys the execution to the previously assigned resource.
     *
     * @throws JobException if the execution cannot be deployed to the assigned resource
     */
    public void deploy() throws JobException {
        final LogicalSlot slot  = assignedResource;

        checkNotNull(slot, "In order to deploy the execution we first have to assign a resource via tryAssignResource.");

        // Check if the TaskManager died in the meantime
        // This only speeds up the response to TaskManagers failing concurrently to deployments.
        // The more general check is the rpcTimeout of the deployment call
        if (!slot.isAlive()) {
            throw new JobException("Target slot (TaskManager) for deployment is no longer alive.");
        }

        // make sure exactly one deployment call happens from the correct state
        // note: the transition from CREATED to DEPLOYING is for testing purposes only
        ExecutionState previous = this.state;
        if (previous == SCHEDULED || previous == CREATED) {
            if (!transitionState(previous, DEPLOYING)) {
                // race condition, someone else beat us to the deploying call.
                // this should actually not happen and indicates a race somewhere else
                throw new IllegalStateException("Cannot deploy task: Concurrent deployment call race.");
            }
        }
        else {
            // vertex may have been cancelled, or it was already scheduled
            throw new IllegalStateException("The vertex must be in CREATED or SCHEDULED state to be deployed. Found state " + previous);
        }

        if (this != slot.getPayload()) {
            throw new IllegalStateException(
                String.format("The execution %s has not been assigned to the assigned slot.", this));
        }

        try {

            // race double check, did we fail/cancel and do we need to release the slot?
            if (this.state != DEPLOYING) {
                slot.releaseSlot(new FlinkException("Actual state of execution " + this + " (" + state + ") does not match expected state DEPLOYING."));
                return;
            }

            if (LOG.isInfoEnabled()) {
                LOG.info(String.format("Deploying %s (attempt #%d) to %s", vertex.getTaskNameWithSubtaskIndex(),
                        attemptNumber, getAssignedResourceLocation().getHostname()));
            }

            final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(
                attemptId,
                slot,
                taskRestore,
                attemptNumber);

            // null taskRestore to let it be GC'ed
            taskRestore = null;

            final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();

            final CompletableFuture<Acknowledge> submitResultFuture = taskManagerGateway.submitTask(deployment, rpcTimeout);

            submitResultFuture.whenCompleteAsync(
                (ack, failure) -> {
                    // only respond to the failure case
                    if (failure != null) {
                        if (failure instanceof TimeoutException) {
                            String taskname = vertex.getTaskNameWithSubtaskIndex() + " (" + attemptId + ')';

                            markFailed(new Exception(
                                "Cannot deploy task " + taskname + " - TaskManager (" + getAssignedResourceLocation()
                                    + ") not responding after a rpcTimeout of " + rpcTimeout, failure));
                        } else {
                            markFailed(failure);
                        }
                    }
                },
                executor);
        }
        catch (Throwable t) {
            markFailed(t);
            ExceptionUtils.rethrow(t);
        }
    }

ExecutionState

  • Execution状态 CREATED(已创建) -> SCHEDULED(已调度) -> DEPLOYING(已部署) -> RUNNING(运行中) -> FINISHED(已完成) 等


package org.apache.flink.runtime.execution;

/**
 * An enumeration of all states that a task can be in during its execution.
 * Tasks usually start in the state {@code CREATED} and switch states according to
 * this diagram:
 * <pre>{@code
 *
 *     CREATED  -> SCHEDULED -> DEPLOYING -> RUNNING -> FINISHED
 *        |            |            |          |
 *        |            |            |   +------+
 *        |            |            V   V
 *        |            |         CANCELLING -----+----> CANCELED
 *        |            |                         |
 *        |            +-------------------------+
 *        |
 *        |                                   ... -> FAILED
 *        V
 *    RECONCILING  -> RUNNING | FINISHED | CANCELED | FAILED
 *
 * }</pre>
 *
 * <p>It is possible to enter the {@code RECONCILING} state from {@code CREATED}
 * state if job manager fail over, and the {@code RECONCILING} state can switch into
 * any existing task state.
 *
 * <p>It is possible to enter the {@code FAILED} state from any other state.
 *
 * <p>The states {@code FINISHED}, {@code CANCELED}, and {@code FAILED} are
 * considered terminal states.
 */
public enum ExecutionState {

    CREATED,
    
    SCHEDULED,
    
    DEPLOYING,
    
    RUNNING,

    /**
     * This state marks "successfully completed". It can only be reached when a
     * program reaches the "end of its input". The "end of input" can be reached
     * when consuming a bounded input (fix set of files, bounded query, etc) or
     * when stopping a program (not cancelling!) which make the input look like
     * it reached its end at a specific point.
     */
    FINISHED,
    
    CANCELING,
    
    CANCELED,
    
    FAILED,

    RECONCILING;

    public boolean isTerminal() {
        return this == FINISHED || this == CANCELED || this == FAILED;
    }
}

TaskExecutor.submitTask

  • 构建Task,Task 默认的状态为CREATED

    Task task = new Task(
                jobInformation,
                taskInformation,
                tdd.getExecutionAttemptId(),
                tdd.getAllocationId(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber(),
                tdd.getProducedPartitions(),
                tdd.getInputGates(),
                tdd.getTargetSlotNumber(),
                taskExecutorServices.getMemoryManager(),
                taskExecutorServices.getIOManager(),
                taskExecutorServices.getNetworkEnvironment(),
                taskExecutorServices.getBroadcastVariableManager(),
                taskStateManager,
                taskManagerActions,
                inputSplitProvider,
                checkpointResponder,
                blobCacheService,
                libraryCache,
                fileCache,
                taskManagerConfiguration,
                taskMetricGroup,
                resultPartitionConsumableNotifier,
                partitionStateChecker,
                getRpcService().getExecutor());
  • 调用task.startTaskThread(); //调用task线程的run()函数
// ----------------------------------------------------------------------
    // Task lifecycle RPCs
    // ----------------------------------------------------------------------

    @Override
    public CompletableFuture<Acknowledge> submitTask(
            TaskDeploymentDescriptor tdd,
            JobMasterId jobMasterId,
            Time timeout) {

        try {
            final JobID jobId = tdd.getJobId();
            final JobManagerConnection jobManagerConnection = jobManagerTable.get(jobId);

            if (jobManagerConnection == null) {
                final String message = "Could not submit task because there is no JobManager " +
                    "associated for the job " + jobId + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            if (!Objects.equals(jobManagerConnection.getJobMasterId(), jobMasterId)) {
                final String message = "Rejecting the task submission because the job manager leader id " +
                    jobMasterId + " does not match the expected job manager leader id " +
                    jobManagerConnection.getJobMasterId() + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            if (!taskSlotTable.tryMarkSlotActive(jobId, tdd.getAllocationId())) {
                final String message = "No task slot allocated for job ID " + jobId +
                    " and allocation ID " + tdd.getAllocationId() + '.';
                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            // re-integrate offloaded data:
            try {
                tdd.loadBigData(blobCacheService.getPermanentBlobService());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not re-integrate offloaded TaskDeploymentDescriptor data.", e);
            }

            // deserialize the pre-serialized information
            final JobInformation jobInformation;
            final TaskInformation taskInformation;
            try {
                jobInformation = tdd.getSerializedJobInformation().deserializeValue(getClass().getClassLoader());
                taskInformation = tdd.getSerializedTaskInformation().deserializeValue(getClass().getClassLoader());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not deserialize the job or task information.", e);
            }

            if (!jobId.equals(jobInformation.getJobId())) {
                throw new TaskSubmissionException(
                    "Inconsistent job ID information inside TaskDeploymentDescriptor (" +
                        tdd.getJobId() + " vs. " + jobInformation.getJobId() + ")");
            }

            TaskMetricGroup taskMetricGroup = taskManagerMetricGroup.addTaskForJob(
                jobInformation.getJobId(),
                jobInformation.getJobName(),
                taskInformation.getJobVertexId(),
                tdd.getExecutionAttemptId(),
                taskInformation.getTaskName(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber());

            InputSplitProvider inputSplitProvider = new RpcInputSplitProvider(
                jobManagerConnection.getJobManagerGateway(),
                taskInformation.getJobVertexId(),
                tdd.getExecutionAttemptId(),
                taskManagerConfiguration.getTimeout());

            TaskManagerActions taskManagerActions = jobManagerConnection.getTaskManagerActions();
            CheckpointResponder checkpointResponder = jobManagerConnection.getCheckpointResponder();

            LibraryCacheManager libraryCache = jobManagerConnection.getLibraryCacheManager();
            ResultPartitionConsumableNotifier resultPartitionConsumableNotifier = jobManagerConnection.getResultPartitionConsumableNotifier();
            PartitionProducerStateChecker partitionStateChecker = jobManagerConnection.getPartitionStateChecker();

            final TaskLocalStateStore localStateStore = localStateStoresManager.localStateStoreForSubtask(
                jobId,
                tdd.getAllocationId(),
                taskInformation.getJobVertexId(),
                tdd.getSubtaskIndex());

            final JobManagerTaskRestore taskRestore = tdd.getTaskRestore();

            final TaskStateManager taskStateManager = new TaskStateManagerImpl(
                jobId,
                tdd.getExecutionAttemptId(),
                localStateStore,
                taskRestore,
                checkpointResponder);

            Task task = new Task(
                jobInformation,
                taskInformation,
                tdd.getExecutionAttemptId(),
                tdd.getAllocationId(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber(),
                tdd.getProducedPartitions(),
                tdd.getInputGates(),
                tdd.getTargetSlotNumber(),
                taskExecutorServices.getMemoryManager(),
                taskExecutorServices.getIOManager(),
                taskExecutorServices.getNetworkEnvironment(),
                taskExecutorServices.getBroadcastVariableManager(),
                taskStateManager,
                taskManagerActions,
                inputSplitProvider,
                checkpointResponder,
                blobCacheService,
                libraryCache,
                fileCache,
                taskManagerConfiguration,
                taskMetricGroup,
                resultPartitionConsumableNotifier,
                partitionStateChecker,
                getRpcService().getExecutor());

            log.info("Received task {}.", task.getTaskInfo().getTaskNameWithSubtasks());

            boolean taskAdded;

            try {
                taskAdded = taskSlotTable.addTask(task);
            } catch (SlotNotFoundException | SlotNotActiveException e) {
                throw new TaskSubmissionException("Could not submit task.", e);
            }

            if (taskAdded) {
                task.startTaskThread();

                return CompletableFuture.completedFuture(Acknowledge.get());
            } else {
                final String message = "TaskManager already contains a task for id " +
                    task.getExecutionId() + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }
        } catch (TaskSubmissionException e) {
            return FutureUtils.completedExceptionally(e);
        }
    }

Task.run

  • 这才开始处理Task,任务的状态用的是ExecutionState中的状态值
  • 更新Task状态从CREATEDDEPLOYING
  • 加载这个Task的jar文件

    // first of all, get a user-code classloader
    // this may involve downloading the job's JAR files and/or classes
    LOG.info("Loading JAR files for task {}.", this);
    
    userCodeClassLoader = createUserCodeClassloader();
    final ExecutionConfig executionConfig = serializedExecutionConfig.deserializeValue(userCodeClassLoader);
  • 构建任务运行环境

    Environment env = new RuntimeEnvironment(
    jobId,
    vertexId,
    executionId,
    executionConfig,
    taskInfo,
    jobConfiguration,
    taskConfiguration,
    userCodeClassLoader,
    memoryManager,
    ioManager,
    broadcastVariableManager,
    taskStateManager,
    accumulatorRegistry,
    kvStateRegistry,
    inputSplitProvider,
    distributedCacheEntries,
    producedPartitions,
    inputGates,
    network.getTaskEventDispatcher(),
    checkpointResponder,
    taskManagerConfig,
    metrics,
    this);
    
  • 更新当前任务状态从 DEPLOYINGRUNNING

    transitionState(ExecutionState.DEPLOYING, ExecutionState.RUNNING)
  • 调用DataSourceTask.invoke(),会根据具体的任务,调用具体任务的函数

/**
     * The core work method that bootstraps the task and executes its code.
     */
    @Override
    public void run() {

        // ----------------------------
        //  Initial State transition
        // ----------------------------
        while (true) {
            ExecutionState current = this.executionState;
            if (current == ExecutionState.CREATED) {
                if (transitionState(ExecutionState.CREATED, ExecutionState.DEPLOYING)) {
                    // success, we can start our work
                    break;
                }
            }
            else if (current == ExecutionState.FAILED) {
                // we were immediately failed. tell the TaskManager that we reached our final state
                notifyFinalState();
                if (metrics != null) {
                    metrics.close();
                }
                return;
            }
            else if (current == ExecutionState.CANCELING) {
                if (transitionState(ExecutionState.CANCELING, ExecutionState.CANCELED)) {
                    // we were immediately canceled. tell the TaskManager that we reached our final state
                    notifyFinalState();
                    if (metrics != null) {
                        metrics.close();
                    }
                    return;
                }
            }
            else {
                if (metrics != null) {
                    metrics.close();
                }
                throw new IllegalStateException("Invalid state for beginning of operation of task " + this + '.');
            }
        }

        // all resource acquisitions and registrations from here on
        // need to be undone in the end
        Map<String, Future<Path>> distributedCacheEntries = new HashMap<>();
        AbstractInvokable invokable = null;

        try {
            // ----------------------------
            //  Task Bootstrap - We periodically
            //  check for canceling as a shortcut
            // ----------------------------

            // activate safety net for task thread
            LOG.info("Creating FileSystem stream leak safety net for task {}", this);
            FileSystemSafetyNet.initializeSafetyNetForThread();

            blobService.getPermanentBlobService().registerJob(jobId);

            // first of all, get a user-code classloader
            // this may involve downloading the job's JAR files and/or classes
            LOG.info("Loading JAR files for task {}.", this);

            userCodeClassLoader = createUserCodeClassloader();
            final ExecutionConfig executionConfig = serializedExecutionConfig.deserializeValue(userCodeClassLoader);

            if (executionConfig.getTaskCancellationInterval() >= 0) {
                // override task cancellation interval from Flink config if set in ExecutionConfig
                taskCancellationInterval = executionConfig.getTaskCancellationInterval();
            }

            if (executionConfig.getTaskCancellationTimeout() >= 0) {
                // override task cancellation timeout from Flink config if set in ExecutionConfig
                taskCancellationTimeout = executionConfig.getTaskCancellationTimeout();
            }

            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            // register the task with the network stack
            // this operation may fail if the system does not have enough
            // memory to run the necessary data exchanges
            // the registration must also strictly be undone
            // ----------------------------------------------------------------

            LOG.info("Registering task at network: {}.", this);

            network.registerTask(this);

            // add metrics for buffers
            this.metrics.getIOMetricGroup().initializeBufferMetrics(this);

            // register detailed network metrics, if configured
            if (taskManagerConfig.getConfiguration().getBoolean(TaskManagerOptions.NETWORK_DETAILED_METRICS)) {
                // similar to MetricUtils.instantiateNetworkMetrics() but inside this IOMetricGroup
                MetricGroup networkGroup = this.metrics.getIOMetricGroup().addGroup("Network");
                MetricGroup outputGroup = networkGroup.addGroup("Output");
                MetricGroup inputGroup = networkGroup.addGroup("Input");

                // output metrics
                for (int i = 0; i < producedPartitions.length; i++) {
                    ResultPartitionMetrics.registerQueueLengthMetrics(
                        outputGroup.addGroup(i), producedPartitions[i]);
                }

                for (int i = 0; i < inputGates.length; i++) {
                    InputGateMetrics.registerQueueLengthMetrics(
                        inputGroup.addGroup(i), inputGates[i]);
                }
            }

            // next, kick off the background copying of files for the distributed cache
            try {
                for (Map.Entry<String, DistributedCache.DistributedCacheEntry> entry :
                        DistributedCache.readFileInfoFromConfig(jobConfiguration)) {
                    LOG.info("Obtaining local cache file for '{}'.", entry.getKey());
                    Future<Path> cp = fileCache.createTmpFile(entry.getKey(), entry.getValue(), jobId, executionId);
                    distributedCacheEntries.put(entry.getKey(), cp);
                }
            }
            catch (Exception e) {
                throw new Exception(
                    String.format("Exception while adding files to distributed cache of task %s (%s).", taskNameWithSubtask, executionId), e);
            }

            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            //  call the user code initialization methods
            // ----------------------------------------------------------------

            TaskKvStateRegistry kvStateRegistry = network.createKvStateTaskRegistry(jobId, getJobVertexId());

            Environment env = new RuntimeEnvironment(
                jobId,
                vertexId,
                executionId,
                executionConfig,
                taskInfo,
                jobConfiguration,
                taskConfiguration,
                userCodeClassLoader,
                memoryManager,
                ioManager,
                broadcastVariableManager,
                taskStateManager,
                accumulatorRegistry,
                kvStateRegistry,
                inputSplitProvider,
                distributedCacheEntries,
                producedPartitions,
                inputGates,
                network.getTaskEventDispatcher(),
                checkpointResponder,
                taskManagerConfig,
                metrics,
                this);

            // now load and instantiate the task's invokable code
            invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass, env);

            // ----------------------------------------------------------------
            //  actual task core work
            // ----------------------------------------------------------------

            // we must make strictly sure that the invokable is accessible to the cancel() call
            // by the time we switched to running.
            this.invokable = invokable;

            // switch to the RUNNING state, if that fails, we have been canceled/failed in the meantime
            if (!transitionState(ExecutionState.DEPLOYING, ExecutionState.RUNNING)) {
                throw new CancelTaskException();
            }

            // notify everyone that we switched to running
            taskManagerActions.updateTaskExecutionState(new TaskExecutionState(jobId, executionId, ExecutionState.RUNNING));

            // make sure the user code classloader is accessible thread-locally
            executingThread.setContextClassLoader(userCodeClassLoader);

            // run the invokable
            invokable.invoke();

            // make sure, we enter the catch block if the task leaves the invoke() method due
            // to the fact that it has been canceled
            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            //  finalization of a successful execution
            // ----------------------------------------------------------------

            // finish the produced partitions. if this fails, we consider the execution failed.
            for (ResultPartition partition : producedPartitions) {
                if (partition != null) {
                    partition.finish();
                }
            }

            // try to mark the task as finished
            // if that fails, the task was canceled/failed in the meantime
            if (!transitionState(ExecutionState.RUNNING, ExecutionState.FINISHED)) {
                throw new CancelTaskException();
            }
        }
        catch (Throwable t) {

            // unwrap wrapped exceptions to make stack traces more compact
            if (t instanceof WrappingRuntimeException) {
                t = ((WrappingRuntimeException) t).unwrap();
            }

            // ----------------------------------------------------------------
            // the execution failed. either the invokable code properly failed, or
            // an exception was thrown as a side effect of cancelling
            // ----------------------------------------------------------------

            try {
                // check if the exception is unrecoverable
                if (ExceptionUtils.isJvmFatalError(t) ||
                        (t instanceof OutOfMemoryError && taskManagerConfig.shouldExitJvmOnOutOfMemoryError())) {

                    // terminate the JVM immediately
                    // don't attempt a clean shutdown, because we cannot expect the clean shutdown to complete
                    try {
                        LOG.error("Encountered fatal error {} - terminating the JVM", t.getClass().getName(), t);
                    } finally {
                        Runtime.getRuntime().halt(-1);
                    }
                }

                // transition into our final state. we should be either in DEPLOYING, RUNNING, CANCELING, or FAILED
                // loop for multiple retries during concurrent state changes via calls to cancel() or
                // to failExternally()
                while (true) {
                    ExecutionState current = this.executionState;

                    if (current == ExecutionState.RUNNING || current == ExecutionState.DEPLOYING) {
                        if (t instanceof CancelTaskException) {
                            if (transitionState(current, ExecutionState.CANCELED)) {
                                cancelInvokable(invokable);
                                break;
                            }
                        }
                        else {
                            if (transitionState(current, ExecutionState.FAILED, t)) {
                                // proper failure of the task. record the exception as the root cause
                                failureCause = t;
                                cancelInvokable(invokable);

                                break;
                            }
                        }
                    }
                    else if (current == ExecutionState.CANCELING) {
                        if (transitionState(current, ExecutionState.CANCELED)) {
                            break;
                        }
                    }
                    else if (current == ExecutionState.FAILED) {
                        // in state failed already, no transition necessary any more
                        break;
                    }
                    // unexpected state, go to failed
                    else if (transitionState(current, ExecutionState.FAILED, t)) {
                        LOG.error("Unexpected state in task {} ({}) during an exception: {}.", taskNameWithSubtask, executionId, current);
                        break;
                    }
                    // else fall through the loop and
                }
            }
            catch (Throwable tt) {
                String message = String.format("FATAL - exception in exception handler of task %s (%s).", taskNameWithSubtask, executionId);
                LOG.error(message, tt);
                notifyFatalError(message, tt);
            }
        }
        finally {
            try {
                LOG.info("Freeing task resources for {} ({}).", taskNameWithSubtask, executionId);

                // clear the reference to the invokable. this helps guard against holding references
                // to the invokable and its structures in cases where this Task object is still referenced
                this.invokable = null;

                // stop the async dispatcher.
                // copy dispatcher reference to stack, against concurrent release
                ExecutorService dispatcher = this.asyncCallDispatcher;
                if (dispatcher != null && !dispatcher.isShutdown()) {
                    dispatcher.shutdownNow();
                }

                // free the network resources
                network.unregisterTask(this);

                // free memory resources
                if (invokable != null) {
                    memoryManager.releaseAll(invokable);
                }

                // remove all of the tasks library resources
                libraryCache.unregisterTask(jobId, executionId);
                fileCache.releaseJob(jobId, executionId);
                blobService.getPermanentBlobService().releaseJob(jobId);

                // close and de-activate safety net for task thread
                LOG.info("Ensuring all FileSystem streams are closed for task {}", this);
                FileSystemSafetyNet.closeSafetyNetAndGuardedResourcesForThread();

                notifyFinalState();
            }
            catch (Throwable t) {
                // an error in the resource cleanup is fatal
                String message = String.format("FATAL - exception in resource cleanup of task %s (%s).", taskNameWithSubtask, executionId);
                LOG.error(message, t);
                notifyFatalError(message, t);
            }

            // un-register the metrics at the end so that the task may already be
            // counted as finished when this happens
            // errors here will only be logged
            try {
                metrics.close();
            }
            catch (Throwable t) {
                LOG.error("Error during metrics de-registration of task {} ({}).", taskNameWithSubtask, executionId, t);
            }
        }
    }

DataSourceTask.invoke()

  • Transformation chain

    // start all chained tasks
            BatchTask.openChainedTasks(this.chainedTasks, this);
    this.chainedTasks = {ArrayList@7851}  size = 3
    0 = {ChainedFlatMapDriver@7850} 
    1 = {ChainedMapDriver@7988} 
    2 = {SynchronousChainedCombineDriver@7989} 
  • 得到输入分片,读取文件的块位置信息
// get input splits to read
            final Iterator<InputSplit> splitIterator = getInputSplits();
  • 得到文件位置信息

    file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt:0+6
    
  • 循环读取分片信息,读到的数据是按行的

    while (!this.taskCanceled && !format.reachedEnd()) {
    OT returned;
    if ((returned = format.nextRecord(serializer.createInstance())) != null) {
        output.collect(returned);
    }
    }
/**
     * Create an Invokable task and set its environment.
     *
     * @param environment The environment assigned to this invokable.
     */
    public DataSourceTask(Environment environment) {
        super(environment);
    }

    @Override
    public void invoke() throws Exception {
        // --------------------------------------------------------------------
        // Initialize
        // --------------------------------------------------------------------
        initInputFormat();

        LOG.debug(getLogString("Start registering input and output"));

        try {
            initOutputs(getUserCodeClassLoader());
        } catch (Exception ex) {
            throw new RuntimeException("The initialization of the DataSource's outputs caused an error: " +
                    ex.getMessage(), ex);
        }

        LOG.debug(getLogString("Finished registering input and output"));

        // --------------------------------------------------------------------
        // Invoke
        // --------------------------------------------------------------------
        LOG.debug(getLogString("Starting data source operator"));

        RuntimeContext ctx = createRuntimeContext();

        final Counter numRecordsOut;
        {
            Counter tmpNumRecordsOut;
            try {
                OperatorIOMetricGroup ioMetricGroup = ((OperatorMetricGroup) ctx.getMetricGroup()).getIOMetricGroup();
                ioMetricGroup.reuseInputMetricsForTask();
                if (this.config.getNumberOfChainedStubs() == 0) {
                    ioMetricGroup.reuseOutputMetricsForTask();
                }
                tmpNumRecordsOut = ioMetricGroup.getNumRecordsOutCounter();
            } catch (Exception e) {
                LOG.warn("An exception occurred during the metrics setup.", e);
                tmpNumRecordsOut = new SimpleCounter();
            }
            numRecordsOut = tmpNumRecordsOut;
        }
        
        Counter completedSplitsCounter = ctx.getMetricGroup().counter("numSplitsProcessed");

        if (RichInputFormat.class.isAssignableFrom(this.format.getClass())) {
            ((RichInputFormat) this.format).setRuntimeContext(ctx);
            LOG.debug(getLogString("Rich Source detected. Initializing runtime context."));
            ((RichInputFormat) this.format).openInputFormat();
            LOG.debug(getLogString("Rich Source detected. Opening the InputFormat."));
        }

        ExecutionConfig executionConfig = getExecutionConfig();

        boolean objectReuseEnabled = executionConfig.isObjectReuseEnabled();

        LOG.debug("DataSourceTask object reuse: " + (objectReuseEnabled ? "ENABLED" : "DISABLED") + ".");
        
        final TypeSerializer<OT> serializer = this.serializerFactory.getSerializer();
        
        try {
            // start all chained tasks
            BatchTask.openChainedTasks(this.chainedTasks, this);
            
            // get input splits to read
            final Iterator<InputSplit> splitIterator = getInputSplits();
            
            // for each assigned input split
            while (!this.taskCanceled && splitIterator.hasNext())
            {
                // get start and end
                final InputSplit split = splitIterator.next();

                LOG.debug(getLogString("Opening input split " + split.toString()));
                
                final InputFormat<OT, InputSplit> format = this.format;
            
                // open input format
                format.open(split);
    
                LOG.debug(getLogString("Starting to read input from split " + split.toString()));
                
                try {
                    final Collector<OT> output = new CountingCollector<>(this.output, numRecordsOut);

                    if (objectReuseEnabled) {
                        OT reuse = serializer.createInstance();

                        // as long as there is data to read
                        while (!this.taskCanceled && !format.reachedEnd()) {

                            OT returned;
                            if ((returned = format.nextRecord(reuse)) != null) {
                                output.collect(returned);
                            }
                        }
                    } else {
                        // as long as there is data to read
                        while (!this.taskCanceled && !format.reachedEnd()) {
                            OT returned;
                            if ((returned = format.nextRecord(serializer.createInstance())) != null) {
                                output.collect(returned);
                            }
                        }
                    }

                    if (LOG.isDebugEnabled() && !this.taskCanceled) {
                        LOG.debug(getLogString("Closing input split " + split.toString()));
                    }
                } finally {
                    // close. We close here such that a regular close throwing an exception marks a task as failed.
                    format.close();
                }
                completedSplitsCounter.inc();
            } // end for all input splits

            // close the collector. if it is a chaining task collector, it will close its chained tasks
            this.output.close();

            // close all chained tasks letting them report failure
            BatchTask.closeChainedTasks(this.chainedTasks, this);

        }
        catch (Exception ex) {
            // close the input, but do not report any exceptions, since we already have another root cause
            try {
                this.format.close();
            } catch (Throwable ignored) {}

            BatchTask.cancelChainedTasks(this.chainedTasks);

            ex = ExceptionInChainedStubException.exceptionUnwrap(ex);

            if (ex instanceof CancelTaskException) {
                // forward canceling exception
                throw ex;
            }
            else if (!this.taskCanceled) {
                // drop exception, if the task was canceled
                BatchTask.logAndThrowException(ex, this);
            }
        } finally {
            BatchTask.clearWriters(eventualOutputs);
            // --------------------------------------------------------------------
            // Closing
            // --------------------------------------------------------------------
            if (this.format != null && RichInputFormat.class.isAssignableFrom(this.format.getClass())) {
                ((RichInputFormat) this.format).closeInputFormat();
                LOG.debug(getLogString("Rich Source detected. Closing the InputFormat."));
            }
        }

        if (!this.taskCanceled) {
            LOG.debug(getLogString("Finished data source operator"));
        }
        else {
            LOG.debug(getLogString("Data source operator cancelled"));
        }
    }

DelimitedInputFormat

DelimitedInputFormat.nextRecord

  • 调用 DelimitedInputFormat.readLine()
    public OT nextRecord(OT record) throws IOException {
        if (readLine()) {
            return readRecord(record, this.currBuffer, this.currOffset, this.currLen);
        } else {
            this.end = true;
            return null;
        }
    }

DelimitedInputFormat.readLine()

  • 具体读取文件数据的方法,怎么读文件数据的逻辑,在这里

protected final boolean readLine() throws IOException {
        if (this.stream == null || this.overLimit) {
            return false;
        }

        int countInWrapBuffer = 0;

        // position of matching positions in the delimiter byte array
        int delimPos = 0;

        while (true) {
            if (this.readPos >= this.limit) {
                // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes.
                if (!fillBuffer(delimPos)) {
                    int countInReadBuffer = delimPos;
                    if (countInWrapBuffer + countInReadBuffer > 0) {
                        // we have bytes left to emit
                        if (countInReadBuffer > 0) {
                            // we have bytes left in the readBuffer. Move them into the wrapBuffer
                            if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) {
                                // reallocate
                                byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer];
                                System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer);
                                this.wrapBuffer = tmp;
                            }

                            // copy readBuffer bytes to wrapBuffer
                            System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer);
                            countInWrapBuffer += countInReadBuffer;
                        }

                        this.offset += countInWrapBuffer;
                        setResult(this.wrapBuffer, 0, countInWrapBuffer);
                        return true;
                    } else {
                        return false;
                    }
                }
            }

            int startPos = this.readPos - delimPos;
            int count;

            // Search for next occurrence of delimiter in read buffer.
            while (this.readPos < this.limit && delimPos < this.delimiter.length) {
                if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) {
                    // Found the expected delimiter character. Continue looking for the next character of delimiter.
                    delimPos++;
                } else {
                    // Delimiter does not match.
                    // We have to reset the read position to the character after the first matching character
                    //   and search for the whole delimiter again.
                    readPos -= delimPos;
                    delimPos = 0;
                }
                readPos++;
            }

            // check why we dropped out
            if (delimPos == this.delimiter.length) {
                // we found a delimiter
                int readBufferBytesRead = this.readPos - startPos;
                this.offset += countInWrapBuffer + readBufferBytesRead;
                count = readBufferBytesRead - this.delimiter.length;

                // copy to byte array
                if (countInWrapBuffer > 0) {
                    // check wrap buffer size
                    if (this.wrapBuffer.length < countInWrapBuffer + count) {
                        final byte[] nb = new byte[countInWrapBuffer + count];
                        System.arraycopy(this.wrapBuffer, 0, nb, 0, countInWrapBuffer);
                        this.wrapBuffer = nb;
                    }
                    if (count >= 0) {
                        System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, count);
                    }
                    setResult(this.wrapBuffer, 0, countInWrapBuffer + count);
                    return true;
                } else {
                    setResult(this.readBuffer, startPos, count);
                    return true;
                }
            } else {
                // we reached the end of the readBuffer
                count = this.limit - startPos;
                
                // check against the maximum record length
                if (((long) countInWrapBuffer) + count > this.lineLengthLimit) {
                    throw new IOException("The record length exceeded the maximum record length (" + 
                            this.lineLengthLimit + ").");
                }

                // Compute number of bytes to move to wrapBuffer
                // Chars of partially read delimiter must remain in the readBuffer. We might need to go back.
                int bytesToMove = count - delimPos;
                // ensure wrapBuffer is large enough
                if (this.wrapBuffer.length - countInWrapBuffer < bytesToMove) {
                    // reallocate
                    byte[] tmp = new byte[Math.max(this.wrapBuffer.length * 2, countInWrapBuffer + bytesToMove)];
                    System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer);
                    this.wrapBuffer = tmp;
                }

                // copy readBuffer to wrapBuffer (except delimiter chars)
                System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove);
                countInWrapBuffer += bytesToMove;
                // move delimiter chars to the beginning of the readBuffer
                System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos);

            }
        }
    }
    
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL Java 关系型数据库
Flink DataSet API迁移到DataStream API实战
本文介绍了作者的Flink项目从DataSet API迁移到DataStream API的背景、方法和遇到的问题以及解决方案。
194 3
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之支持 MySQL 的并行复制吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
SQL 网络安全 API
实时计算 Flink版产品使用问题之使用ProcessTime进行窗口计算,并且有4台机器的时间提前了2个小时,会导致什么情况
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行DWS层的实时聚合计算时,遇到多次更新同一个字段的情况,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
Java 流计算
Flink中异步AsyncIO的实现 (源码分析)
Flink中异步AsyncIO的实现 (源码分析)
|
4月前
|
SQL 消息中间件 关系型数据库
实时计算 Flink版产品使用合集之flink-cdc-oracle 可以并行读取吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
流计算
Flink CDC里假设我做widow计算使用ProcessTime计算
【1月更文挑战第23天】【1月更文挑战第113篇】Flink CDC里假设我做widow计算使用ProcessTime计算
216 45
|
4月前
|
NoSQL MongoDB 数据库
在Flink的BEGIN STATEMENT SET;END;语句
在Flink的BEGIN STATEMENT SET;END;语句【1月更文挑战第19天】【1月更文挑战第93篇】
156 7
|
4月前
|
消息中间件 Java Kafka
Flink中的DataStream和DataSet有什么区别?请解释其概念和用途。
Flink中的DataStream和DataSet有什么区别?请解释其概念和用途。
96 0
下一篇
DDNS