学好机器学习和大数据必备的6本好书!

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 机器学习和数据科学是复杂而相互关联的概念。要想让自己在技术紧跟趋势,你必须消耗大量的时间进行知识的更新。

机器学习和数据科学是复杂而相互关联的概念。要想让自己在技术紧跟趋势,你必须消耗大量的时间进行知识的更新。

日复一日的重复劳动不等于学习,这样仍有可能掉队。

所以一方面我们需要学习新知识,一方面保持实操经验。这样完美技能的组合,才能帮助你在行业中取得成功。

尽管互联网上存在大量的学习资源,但对于信息的选择并不是一件容易的事情,所以,选择几本优秀的书籍尤为重要。

这里我们精选出六本好书,助你学好机器学习和大数据科学!


1. Machine Learning Yearning 认识机器学习,吴恩达著



现代数据技术,大数据和数据科学过程开发和生产精确的机器学习系统不是什么新东西了。 大数据学习扣qun:  74零零加4一3八yi虽然它们不是同义词,但是它们之间息息相关,因此,如果你在数据行业工作,那么提高对机器学习的理解和认识很有必要。

你可以从这本优秀的书籍中学到一些见解,例如应该多长时间收集一次培训数据,如何使用端口到端口的深度学习以及如何利用你正在创建的系统来共享数据和统计信息。

2. Hadoop: The Definitive Guide 权威指南,Tom White著



Apache Hadoop 是用于处理和管理大量数据的主要框架。任何从事编程或数据科学工作的人都熟悉这个平台,因为它是开发可扩展系统最有效的方法之一。

恰好专家 Hadoop 顾问和 Apache 软件基金会成员 Tom White 写了一本明确的指南,里面包含了许多独到的见解和有用的资源。更重要的是,它将引导你完成使用Hadoop 集群的整个过程和设置。

另外,Apache Spark 也是你可以花点时间学习的另一个重要平台。

3. Predictive Analytics 分析预测,Eric Siegel著



本书详细解释了如何获取大多数形式的数据和信息,并将其转化为可操作的预测或见解。关键是要帮助专业人员更好地了解他们的客户。你将学习如何识别他们购买的产品和服务,他们访问的地点,与他们共鸣的内容等等。

数据科学家的工作是用未经过滤的原始数据来确定可用的趋势和模式。本书不仅可以帮助你做到这一点,而且还可以提出必要的预测算法来改进未来的操作和流程,可以说是预测分析的圣经。

4. Storytelling With Data 用数据讲故事,KoleNussbaumer Knaflic著



这是一本权威的可视化指南,可以让你了解应该如何处理你收集的所有有用的数据。许多见解适用于常用技术,对于专业人士很有帮助。是业内任何人都必备的重要阅读物,甚至行业外人士也合适一读。

简而言之,本书涉及大量数据的组织和提取。这意味着过滤掉大量不明确的数据,改进数据收集流程,并提出相关的和实际的数据可视化。

5. Inflection Point 拐点,Scott Stawski著



本书副标题为 “How the Convergence of Cloud, Mobility, Apps and Data Will Shape the Future of Business(云、移动性、应用程序和数据的融合如何影响行业的未来)”,这本书对于了解当前数据分析和云计算行业的发展势头十分必要。

特别值得注意的是,Stawski直接关注原始数据的存储、挖掘系统、如何部署以及如何进行实际应用。

它不仅仅是一个理论指南,还揭示了实际的工作系统,并描述了如何使它们适应你的企业。

最重要的一点是,你能够从本书中清楚了解如何在企业中部署这些工具和平台。

6. An Introduction to Statistical Learning With Applications in R 基于R语言的统计学习导论,Gareth James等著



统计学习和相关的方法是数据科学工作所必需的。这本教科书能够帮助从本科生到博士生了解这些概念。

另外,它也提供了很好的R语言算法,有详细的解释和演练。这样做的原因是,你可以在练习数据科学的时候把它作为一个直接的资源,特别是在学习阶段。

这是一本好书,值得定期回顾,这些概念和信息对于日常应用也是实用的。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
100 10
|
1月前
|
机器学习/深度学习 自然语言处理 算法
大数据与机器学习
大数据与机器学习紧密相关,前者指代海量、多样化且增长迅速的数据集,后者则是使计算机通过数据自动学习并优化的技术。大数据涵盖结构化、半结构化及非结构化的信息,其应用广泛,包括商业智能、金融和医疗保健等领域;而机器学习分为监督学习、无监督学习及强化学习,被应用于图像识别、自然语言处理和推荐系统等方面。二者相结合,能有效提升数据分析的准确性和效率,在智能交通、医疗及金融科技等多个领域创造巨大价值。
99 2
|
3月前
|
机器学习/深度学习 分布式计算 并行计算
性能优化视角:Python与R在大数据与高性能机器学习中的选择
【8月更文第6天】随着数据量的激增,传统的单机计算已经难以满足处理大规模数据集的需求。Python和R作为流行的数据科学语言,各自拥有独特的特性和生态系统来应对大数据和高性能计算的挑战。本文将从性能优化的角度出发,探讨这两种语言在处理大数据集和高性能计算时的不同表现,并提供具体的代码示例。
101 3
|
3月前
|
机器学习/深度学习 分布式计算 算法
MaxCompute 的 MapReduce 与机器学习
【8月更文第31天】随着大数据时代的到来,如何有效地处理和分析海量数据成为了一个重要的课题。MapReduce 是一种编程模型,用于处理和生成大型数据集,其核心思想是将计算任务分解为可以并行处理的小任务。阿里云的 MaxCompute 是一个面向离线数据仓库的计算服务,提供了 MapReduce 接口来处理大规模数据集。本文将探讨如何利用 MaxCompute 的 MapReduce 功能来执行复杂的计算任务,特别是应用于机器学习场景。
80 0
|
4月前
|
机器学习/深度学习 数据采集 大数据
驾驭大数据洪流:Pandas与NumPy在高效数据处理与机器学习中的核心作用
【7月更文挑战第13天】在大数据时代,Pandas与NumPy是Python数据分析的核心,用于处理复杂数据集。在一个电商销售数据案例中,首先使用Pandas的`read_csv`加载CSV数据,通过`head`和`describe`进行初步探索。接着,数据清洗涉及填充缺失值和删除异常数据。然后,利用`groupby`和`aggregate`分析销售趋势,并用Matplotlib可视化结果。在机器学习预处理阶段,借助NumPy进行数组操作,如特征缩放。Pandas的数据操作便捷性与NumPy的数值计算效率,共同助力高效的数据分析和建模。
90 3
|
5月前
|
机器学习/深度学习 人工智能 算法
【机器学习】机器学习与AI大数据的融合:开启智能新时代
【机器学习】机器学习与AI大数据的融合:开启智能新时代
175 1
|
4月前
|
机器学习/深度学习 数据采集 算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
29天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
下一篇
无影云桌面