Nvidia GPU如何在Kubernetes 里工作

简介: # Nvidia GPU如何在Kubernetes 里工作 本文介绍Nvidia GPU设备如何在Kubernetes中管理调度。 整个工作流程分为以下两个方面: * 如何在容器中使用GPU * Kubernetes 如何调度GPU ### 如何在容器中使用GPU 想要在容器中的应用可以操作GPU, 需要实两个目标 1.

Nvidia GPU如何在Kubernetes 里工作

本文介绍Nvidia GPU设备如何在Kubernetes中管理调度。 整个工作流程分为以下两个方面:

  • 如何在容器中使用GPU
  • Kubernetes 如何调度GPU

如何在容器中使用GPU

想要在容器中的应用可以操作GPU, 需要实两个目标

  1. 容器中可以查看GPU设备
  2. 容器中运行的应用,可以通过Nvidia驱动操作GPU显卡

详细介绍可见: https://devblogs.nvidia.com/gpu-containers-runtime/

Nvidia-docker

GitHub: https://github.com/NVIDIA/nvidia-docker
Nvidia提供Nvidia-docker项目,它是通过修改Docker的Runtime为nvidia runtime工作,当我们执行 nvidia-docker create 或者 nvidia-docker run    时,它会默认加上 --runtime=nvidia 参数。将runtime指定为nvidia。
当然,为了方便使用,可以直接修改Docker daemon 的启动参数,修改默认的 Runtime为 nvidia-container-runtime 

cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

gpu-containers-runtime

GitHub:  https://github.com/NVIDIA/nvidia-container-runtime
gpu-containers-runtime  是一个NVIDIA维护的容器 Runtime,它在runc的基础上,维护了一份 Patch, 我们可以看到这个patch的内容非常简单, 唯一做的一件事情就是在容器启动前,注入一个 prestart  的hook 到容器的Spec中(hook的定义可以查看 OCI规范 )。这个hook 的执行时机是在容器启动后(Namespace已创建完成),容器自定义命令(Entrypoint)启动前。nvidia-containers-runtime 定义的 prestart 的命令很简单,只有一句  nvidia-container-runtime-hook prestart  

gpu-containers-runtime-hook

GitHub: https://github.com/NVIDIA/nvidia-container-runtime/tree/master/hook/nvidia-container-runtime-hook 
gpu-containers-runtime-hook  是一个简单的二进制包,定义在Nvidia container runtime的hook中执行。 目的是将当前容器中的信息收集并处理,转换为参数调用 nvidia-container-cli  。
主要处理以下参数:

  • 根据环境变量 NVIDIA_VISIBLE_DEVICES 判断是否会分配GPU设备,以及挂载的设备ID。如果是未指定或者是 void ,则认为是非GPU容器,不做任何处理。   否则调用 nvidia-container-cli , GPU设备作为 --devices  参数传入
  •  环境环境变量 NVIDIA_DRIVER_CAPABILITIES 判断容器需要被映射的 Nvidia 驱动库。
  • 环境变量 NVIDIA_REQUIRE_*  判断GPU的约束条件。 例如 cuda>=9.0 等。 作为 --require= 参数传入
  • 传入容器进程的Pid

gpu-containers-runtime-hook  做的事情,就是将必要的信息整理为参数,传给 nvidia-container-cli configure 并执行。

nvidia-container-cli

nvidia-container-cli 是一个命令行工具,用于配置Linux容器对GPU 硬件的使用。支持

  • list:  打印 nvidia 驱动库及路径
  • info:  打印所有Nvidia GPU设备
  • configure: 进入给定进程的命名空间,执行必要操作保证容器内可以使用被指定的GPU以及对应能力(指定 Nvidia 驱动库)。 configure是我们使用到的主要命令,它将Nvidia 驱动库的so文件 和 GPU设备信息, 通过文件挂载的方式映射到容器中。

代码如下: https://github.com/NVIDIA/libnvidia-container/blob/master/src/cli/configure.c#L272

        /* Mount the driver and visible devices. */
        if (perm_set_capabilities(&err, CAP_EFFECTIVE, ecaps[NVC_MOUNT], ecaps_size(NVC_MOUNT)) < 0) {
                warnx("permission error: %s", err.msg);
                goto fail;
        }
        if (nvc_driver_mount(nvc, cnt, drv) < 0) {
                warnx("mount error: %s", nvc_error(nvc));
                goto fail;
        }
        for (size_t i = 0; i < dev->ngpus; ++i) {
                if (gpus[i] != NULL && nvc_device_mount(nvc, cnt, gpus[i]) < 0) {
                        warnx("mount error: %s", nvc_error(nvc));
                        goto fail;
                }
         }

如果对其他模块感兴趣,可以在 https://github.com/NVIDIA/libnvidia-container  阅读代码。

以上就是一个nvidia-docker的容器启动的所有步骤。

1

当我们安装了nvidia-docker, 我们可以通过以下方式启动容器

docker run --rm -it -e NVIDIA_VISIBLE_DEVICES=all ubuntu:18.04

在容器中执行 mount  命令,可以看到名为 libnvidia-xxx.so 和 /proc/driver/nvidia/gpus/xxx  映射到容器中。 以及 nvidia-smi 和 nvidia-debugdump 等nvidia工具。

# mount 
##  ....
/dev/vda1 on /usr/bin/nvidia-smi type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/bin/nvidia-debugdump type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/bin/nvidia-persistenced type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/bin/nvidia-cuda-mps-control type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/bin/nvidia-cuda-mps-server type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-ml.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-cfg.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libcuda.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-opencl.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-fatbinaryloader.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
/dev/vda1 on /usr/lib/x86_64-linux-gnu/libnvidia-compiler.so.396.37 type ext4 (ro,nosuid,nodev,relatime,data=ordered)
devtmpfs on /dev/nvidiactl type devtmpfs (ro,nosuid,noexec,relatime,size=247574324k,nr_inodes=61893581,mode=755)
devtmpfs on /dev/nvidia-uvm type devtmpfs (ro,nosuid,noexec,relatime,size=247574324k,nr_inodes=61893581,mode=755)
devtmpfs on /dev/nvidia-uvm-tools type devtmpfs (ro,nosuid,noexec,relatime,size=247574324k,nr_inodes=61893581,mode=755)
devtmpfs on /dev/nvidia4 type devtmpfs (ro,nosuid,noexec,relatime,size=247574324k,nr_inodes=61893581,mode=755)
proc on /proc/driver/nvidia/gpus/0000:00:0e.0 type proc (ro,nosuid,nodev,noexec,relatime)

我们可以执行nvidia-smi查看容器中被映射的GPU卡
2

Kubernetes 如何调度GPU

之前我们介绍了如何在容器中使用Nvidia GPU卡。 那么当一个集群中有成百上千个节点以及GPU卡,我们的问题变成了如何管理和调度这些GPU。

Device plugin

Kubernetes 提供了Device Plugin 的机制,用于异构设备的管理场景。原理是会为每个特殊节点上启动一个针对某个设备的DevicePlugin pod, 这个pod需要启动grpc服务, 给kubelet提供一系列接口。

type DevicePluginClient interface {
    // GetDevicePluginOptions returns options to be communicated with Device
    // Manager
    GetDevicePluginOptions(ctx context.Context, in *Empty, opts ...grpc.CallOption) (*DevicePluginOptions, error)
    // ListAndWatch returns a stream of List of Devices
    // Whenever a Device state change or a Device disapears, ListAndWatch
    // returns the new list
    ListAndWatch(ctx context.Context, in *Empty, opts ...grpc.CallOption) (DevicePlugin_ListAndWatchClient, error)
    // Allocate is called during container creation so that the Device
    // Plugin can run device specific operations and instruct Kubelet
    // of the steps to make the Device available in the container
    Allocate(ctx context.Context, in *AllocateRequest, opts ...grpc.CallOption) (*AllocateResponse, error)
    // PreStartContainer is called, if indicated by Device Plugin during registeration phase,
    // before each container start. Device plugin can run device specific operations
    // such as reseting the device before making devices available to the container
    PreStartContainer(ctx context.Context, in *PreStartContainerRequest, opts ...grpc.CallOption) (*PreStartContainerResponse, error)
}

DevicePlugin 注册一个 socket 文件到 /var/lib/kubelet/device-plugins/ 目录下,kubelet 通过这个目录下的socket文件向对应的 Device plugin 发送grpc请求。
本文不过多介绍Device Plugin 的设计, 感兴趣可以阅读这篇文章: https://yq.aliyun.com/articles/498185

Nvidia plugin

Github: https://github.com/NVIDIA/k8s-device-plugin
为了能够在Kubernetes中管理和调度GPU, Nvidia提供了Nvidia GPU的Device Plugin。 主要功能如下

  • 支持ListAndWatch 接口,上报节点上的GPU数量
  • 支持Allocate接口, 支持分配GPU的行为。 

Allocate 接口只做了一件事情,就是给容器加上 NVIDIA_VISIBLE_DEVICES  环境变量。 https://github.com/NVIDIA/k8s-device-plugin/blob/v1.11/server.go#L153

// Allocate which return list of devices.
func (m *NvidiaDevicePlugin) Allocate(ctx context.Context, reqs *pluginapi.AllocateRequest) (*pluginapi.AllocateResponse, error) {
    devs := m.devs
    responses := pluginapi.AllocateResponse{}
    for _, req := range reqs.ContainerRequests {
        response := pluginapi.ContainerAllocateResponse{
            Envs: map[string]string{
                "NVIDIA_VISIBLE_DEVICES": strings.Join(req.DevicesIDs, ","),
            },
        }

        for _, id := range req.DevicesIDs {
            if !deviceExists(devs, id) {
                return nil, fmt.Errorf("invalid allocation request: unknown device: %s", id)
            }
        }

        responses.ContainerResponses = append(responses.ContainerResponses, &response)
    }

    return &responses, nil
}

前面我们提到, Nvidia的 gpu-container-runtime  根据容器的 NVIDIA_VISIBLE_DEVICES 环境变量,会决定这个容器是否为GPU容器,并且可以使用哪些GPU设备。 而Nvidia GPU device plugin做的事情,就是根据kubelet 请求中的GPU DeviceId, 转换为 NVIDIA_VISIBLE_DEVICES 环境变量返回给kubelet, kubelet收到返回内容后,会自动将返回的环境变量注入到容器中。当容器中包含环境变量,启动时 gpu-container-runtime  会根据 NVIDIA_VISIBLE_DEVICES 里声明的设备信息,将设备映射到容器中,并将对应的Nvidia Driver Lib 也映射到容器中。

总体流程

整个Kubernetes调度GPU的过程如下:

  • GPU Device plugin 部署到GPU节点上,通过 ListAndWatch  接口,上报注册节点的GPU信息和对应的DeviceID。 
  • 当有声明 nvidia.com/gpu  的GPU Pod创建出现,调度器会综合考虑GPU设备的空闲情况,将Pod调度到有充足GPU设备的节点上。
  • 节点上的kubelet 启动Pod时,根据request中的声明调用各个Device plugin 的 allocate接口, 由于容器声明了GPU。 kubelet 根据之前 ListAndWatch 接口收到的Device信息,选取合适的设备,DeviceID 作为参数,调用GPU DevicePlugin的 Allocate 接口
  • GPU DevicePlugin ,接收到调用,将DeviceID 转换为 NVIDIA_VISIBLE_DEVICES 环境变量,返回kubelet
  • kubelet将环境变量注入到Pod, 启动容器
  • 容器启动时, gpu-container-runtime 调用 gpu-containers-runtime-hook 
  • gpu-containers-runtime-hook  根据容器的 NVIDIA_VISIBLE_DEVICES 环境变量,转换为 --devices 参数,调用 nvidia-container-cli prestart  
  • nvidia-container-cli 根据 --devices ,将GPU设备映射到容器中。 并且将宿主机的Nvidia Driver Lib 的so文件也映射到容器中。 此时容器可以通过这些so文件,调用宿主机的Nvidia Driver。
相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
11月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
8月前
|
存储 Kubernetes 对象存储
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
借助阿里云ACK One注册集群,充分利用阿里云强大ACS GPU算力,实现DeepSeek推理模型高效部署。
|
5月前
|
Kubernetes 调度 异构计算
一文搞懂 GPU 共享方案: NVIDIA Time Slicing
本文主要分享 GPU 共享方案,包括如何安装、配置以及使用,最后通过分析源码了 TImeSlicing 的具体实现。通过配置 TImeSlicing 可以实现 Pod 共享一块物理 GPU,以提升资源利用率。
187 11
|
7月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
485 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
8月前
|
边缘计算 调度 对象存储
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
介绍如何使用ACK Edge与虚拟节点满足DeepSeek部署的弹性需求。
|
8月前
|
存储 Kubernetes 对象存储
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
180 3
|
8月前
|
边缘计算 调度 对象存储
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
134 0
|
8月前
|
存储 Kubernetes 对象存储
部署 DeepSeek 但 GPU 不足,ACK One 注册集群助力解决 IDC GPU 资源不足
部署 DeepSeek 但 GPU 不足,ACK One 注册集群助力解决 IDC GPU 资源不足
|
5月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
175 9
|
5月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。

热门文章

最新文章