常用排序算法复杂度和稳定性总结

简介: 排序算法平均时间复杂度最好情况最坏情况空间复杂度稳定性冒泡排序O(n2)O(n)O(n2)O(1)稳定选择排序O(n2)O(n2)O(n2)O(1)不稳定插入排序O(n2)O(n)O(n2)O(1)稳定希尔排序O(nlogn)...
排序算法 平均时间复杂度 最好情况 最坏情况 空间复杂度 稳定性
冒泡排序 O(n2) O(n) O(n2) O(1) 稳定
选择排序 O(n2) O(n2) O(n2) O(1) 不稳定
插入排序 O(n2) O(n) O(n2) O(1) 稳定
希尔排序 O(nlogn)~O(n2) O(n2) O(n2) O(1) 不稳定
归并排序 O(nlogn) O(nlogn) O(nlogn) O(n) 稳定
快速排序 O(nlogn) O(nlogn) O(n2) O(logn)~O(n) 不稳定
堆排序 O(nlogn) O(nlogn) O(nlogn) O(1) 不稳定
计数排序 O(n+k) O(n+k) O(n+k) O(k) 稳定
桶排序 O(n+k) O(n+k) O(n2) O(n+k) 稳定
基数排序 O(n×k) O(n×k) O(n×k) O(n+k) 稳定

堆选归集与初始序列无关

相关文章
|
5月前
|
机器学习/深度学习 存储 算法
1 .算法的复杂度(超全)
1 .算法的复杂度(超全)
|
30天前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
21 0
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
54 4
|
2月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
41 1
|
3月前
|
算法
【初阶数据结构】复杂度算法题篇
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 kmodn 个元素会移动至数组头部,其余元素向后移动 kmodn 个位置。
26 1
|
3月前
|
搜索推荐
九大排序算法时间复杂度、空间复杂度、稳定性
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
149 1
|
4月前
|
机器学习/深度学习 存储 算法
【数据结构】算法的复杂度
算法的时间复杂度和空间复杂度
72 1
【数据结构】算法的复杂度
|
4月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
【7月更文挑战第23天】在Python编程中,掌握算法复杂度—时间与空间消耗,是提升程序效能的关键。算法如冒泡排序($O(n^2)$时间/$O(1)$空间),或使用Python内置函数找最大值($O(n)$时间),需精确诊断与优化。数据结构如哈希表可将查找从$O(n)$降至$O(1)$。运用`timeit`模块评估性能,深入理解数据结构和算法,使Python代码更高效。持续实践与学习,精通复杂度管理。
64 9
|
5月前
|
算法 搜索推荐
数据结构和算法——表排序(算法概述、物理排序、复杂度分析,包含详细清晰图示过程)
数据结构和算法——表排序(算法概述、物理排序、复杂度分析,包含详细清晰图示过程)
41 0