Flink1.7.2 local WordCount源码分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 环境 local,版本 Flink.1.7.2 用官网示例WordCount Scala程序分析源码 本文从source、operator、sink三个方面详细分析Flink源码实现

Flink1.7.2 local WordCount源码分析

概述

  • Flink 环境 local,版本 Flink.1.7.2
  • 用官网示例WordCount Scala程序分析源码
  • 本文从source、operator、sink三个方面详细分析源码实现

时序图

005_source_operation_sink_

输入数据

  • nc -lk 1234
a b a b a

客户端程序

SocketWindowWordCountLocal.scala

package com.opensourceteams.module.bigdata.flink.example.stream.worldcount.nc

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time

/**
  * nc -lk 1234  输入数据
  */
object SocketWindowWordCountLocal {

  def main(args: Array[String]): Unit = {


    val port = 1234
    // get the execution environment
   // val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val configuration : Configuration = new Configuration()
    val timeout = "100000 s"
    val timeoutHeartbeatPause = "1000000 s"
    configuration.setString("akka.ask.timeout",timeout)
    configuration.setString("akka.lookup.timeout",timeout)
    configuration.setString("akka.tcp.timeout",timeout)
    configuration.setString("akka.transport.heartbeat.interval",timeout)
    configuration.setString("akka.transport.heartbeat.pause",timeoutHeartbeatPause)
    configuration.setString("akka.watch.heartbeat.pause",timeout)
    configuration.setInteger("heartbeat.interval",10000000)
    configuration.setInteger("heartbeat.timeout",50000000)
    val env:StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment(1,configuration)





    // get input data by connecting to the socket
    val dataStream = env.socketTextStream("localhost", port, '\n')



    import org.apache.flink.streaming.api.scala._
    val textResult = dataStream.flatMap( w => w.split("\\s") ).map( w => WordWithCount(w,1))
      .keyBy("word")
      /**
        * 每20秒刷新一次,相当于重新开始计数,
        * 好处,不需要一直拿所有的数据统计
        * 只需要在指定时间间隔内的增量数据,减少了数据规模
        */
      .timeWindow(Time.seconds(20))
      //.countWindow(3)
      //.countWindow(3,1)
      //.countWindowAll(3)


      .sum("count" )

    textResult.print().setParallelism(1)



    if(args == null || args.size ==0){
      env.execute("默认作业")

      //执行计划
      //println(env.getExecutionPlan)
      //StreamGraph
     //println(env.getStreamGraph.getStreamingPlanAsJSON)



      //JsonPlanGenerator.generatePlan(jobGraph)

    }else{
      env.execute(args(0))
    }

    println("结束")

  }


  // Data type for words with count
  case class WordWithCount(word: String, count: Long)

}

Flink源码分析

Source(读取数据)

SocketTextStreamFunction

  • SocketTextStreamFunction.run函数,只要task在运行,就一直通过Socket连接流,BufferedReader.read进行读取,每次读8kb,然后对缓存中的数据进行按行处理
  • NonTimestampContext.collect函数进行处理
@Override
    public void run(SourceContext<String> ctx) throws Exception {
        final StringBuilder buffer = new StringBuilder();
        long attempt = 0;

        while (isRunning) {

            try (Socket socket = new Socket()) {
                currentSocket = socket;

                LOG.info("Connecting to server socket " + hostname + ':' + port);
                socket.connect(new InetSocketAddress(hostname, port), CONNECTION_TIMEOUT_TIME);
                try (BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {

                    char[] cbuf = new char[8192];
                    int bytesRead;
                    while (isRunning && (bytesRead = reader.read(cbuf)) != -1) {
                        buffer.append(cbuf, 0, bytesRead);
                        int delimPos;
                        while (buffer.length() >= delimiter.length() && (delimPos = buffer.indexOf(delimiter)) != -1) {
                            String record = buffer.substring(0, delimPos);
                            // truncate trailing carriage return
                            if (delimiter.equals("\n") && record.endsWith("\r")) {
                                record = record.substring(0, record.length() - 1);
                            }
                            ctx.collect(record);
                            buffer.delete(0, delimPos + delimiter.length());
                        }
                    }
                }
            }

            // if we dropped out of this loop due to an EOF, sleep and retry
            if (isRunning) {
                attempt++;
                if (maxNumRetries == -1 || attempt < maxNumRetries) {
                    LOG.warn("Lost connection to server socket. Retrying in " + delayBetweenRetries + " msecs...");
                    Thread.sleep(delayBetweenRetries);
                }
                else {
                    // this should probably be here, but some examples expect simple exists of the stream source
                    // throw new EOFException("Reached end of stream and reconnects are not enabled.");
                    break;
                }
            }
        }

        // collect trailing data
        if (buffer.length() > 0) {
            ctx.collect(buffer.toString());
        }
    }

NonTimestampContext

  • collect
  • element参数为读取到source中的一行数据
  • 调用AbstractStreamOperator.CountingOutput.collect
        public void collect(T element) {
            synchronized (lock) {
                output.collect(reuse.replace(element));
            }
        }

AbstractStreamOperator.CountingOutput

  • collect
  • 调用CopyingChainingOutput.collect
        @Override
        public void collect(StreamRecord<OUT> record) {
            numRecordsOut.inc();
            output.collect(record);
        }

CopyingChainingOutput.collect

  • collect
  • 调用pushToOperator()
        public void collect(StreamRecord<T> record) {
            if (this.outputTag != null) {
                // we are only responsible for emitting to the main input
                return;
            }

            pushToOperator(record);
        }

pushToOperator

  • 调用StreamFlatMap.processElement
protected <X> void pushToOperator(StreamRecord<X> record) {
            try {
                // we know that the given outputTag matches our OutputTag so the record
                // must be of the type that our operator (and Serializer) expects.
                @SuppressWarnings("unchecked")
                StreamRecord<T> castRecord = (StreamRecord<T>) record;

                numRecordsIn.inc();
                StreamRecord<T> copy = castRecord.copy(serializer.copy(castRecord.getValue()));
                operator.setKeyContextElement1(copy);
                operator.processElement(copy);
            } catch (ClassCastException e) {
                if (outputTag != null) {
                    // Enrich error message
                    ClassCastException replace = new ClassCastException(
                        String.format(
                            "%s. Failed to push OutputTag with id '%s' to operator. " +
                                "This can occur when multiple OutputTags with different types " +
                                "but identical names are being used.",
                            e.getMessage(),
                            outputTag.getId()));

                    throw new ExceptionInChainedOperatorException(replace);
                } else {
                    throw new ExceptionInChainedOperatorException(e);
                }
            } catch (Exception e) {
                throw new ExceptionInChainedOperatorException(e);
            }

        }
    }

Operator(FlatMap)

StreamFlatMap

  • processElement
  • userFunction为自定义函数,即flatMap( w => w.split("\s") ),括号中的表达式
  • element.getValue()为source中的一行数据
  • 调用DataStream.flatMap
    public void processElement(StreamRecord<IN> element) throws Exception {
        collector.setTimestamp(element);
        userFunction.flatMap(element.getValue(), collector);
    }

DataStream

  • flatMap
  • cleanFun(in) 相当于是,source中的一行数据,执行完flatMap函数后返回的结果数据,然后进行foreach遍历,即取出集合中的一个元素,调用out.collect函数,即调用TimestampedCollector.collect
  /**
   * Creates a new DataStream by applying the given function to every element and flattening
   * the results.
   */
  def flatMap[R: TypeInformation](fun: T => TraversableOnce[R]): DataStream[R] = {
    if (fun == null) {
      throw new NullPointerException("FlatMap function must not be null.")
    }
    val cleanFun = clean(fun)
    val flatMapper = new FlatMapFunction[T, R] {
      def flatMap(in: T, out: Collector[R]) { cleanFun(in) foreach out.collect }
    }
    flatMap(flatMapper)
  }

Operator(Map)

TimestampedCollector

  • collect
  • 调用CountingOutput.collect()
    public void collect(T record) {
        output.collect(reuse.replace(record));
    }

CountingOutput

  • 调用CopyingChainingOutput.collect
    public void collect(StreamRecord<OUT> record) {
            numRecordsOut.inc();
            output.collect(record);
        }

CopyingChainingOutput

  • 调用函数pushToOperator()
        public void collect(StreamRecord<T> record) {
            if (this.outputTag != null) {
                // we are only responsible for emitting to the main input
                return;
            }

            pushToOperator(record);
        }
  • 调用operator.processElement(copy);即StreamMap.processElement
protected <X> void pushToOperator(StreamRecord<X> record) {
            try {
                // we know that the given outputTag matches our OutputTag so the record
                // must be of the type that our operator (and Serializer) expects.
                @SuppressWarnings("unchecked")
                StreamRecord<T> castRecord = (StreamRecord<T>) record;

                numRecordsIn.inc();
                StreamRecord<T> copy = castRecord.copy(serializer.copy(castRecord.getValue()));
                operator.setKeyContextElement1(copy);
                operator.processElement(copy);
            } catch (ClassCastException e) {
                if (outputTag != null) {
                    // Enrich error message
                    ClassCastException replace = new ClassCastException(
                        String.format(
                            "%s. Failed to push OutputTag with id '%s' to operator. " +
                                "This can occur when multiple OutputTags with different types " +
                                "but identical names are being used.",
                            e.getMessage(),
                            outputTag.getId()));

                    throw new ExceptionInChainedOperatorException(replace);
                } else {
                    throw new ExceptionInChainedOperatorException(e);
                }
            } catch (Exception e) {
                throw new ExceptionInChainedOperatorException(e);
            }

        }
    }

StreamMap

  • userFunction 相当于map( w => WordWithCount(w,1)) 括号中的表达式
  • userFunction.map(element.getValue()) 相当于,拿到Source中一行数据,进行FlatMap操作后,取集合中的一个元素,再进行flatMap操作,得到的值:(a,1)
  • 再调用output.collect,即 CountingOutput.collect
    public void processElement(StreamRecord<IN> element) throws Exception {
        output.collect(element.replace(userFunction.map(element.getValue())));
    }

CountingOutput

  • 调用RecordWriterOutput.collect
    public void collect(StreamRecord<OUT> record) {
            numRecordsOut.inc();
            output.collect(record);
        }

RecordWriterOutput

  • 调用函数pushToRecordWriter
    public void collect(StreamRecord<OUT> record) {
        if (this.outputTag != null) {
            // we are only responsible for emitting to the main input
            return;
        }

        pushToRecordWriter(record);
    }
  • pushToRecordWriter
  • 调用StreamRecordWriter.emit
    private <X> void pushToRecordWriter(StreamRecord<X> record) {
        serializationDelegate.setInstance(record);

        try {
            recordWriter.emit(serializationDelegate);
        }
        catch (Exception e) {
            throw new RuntimeException(e.getMessage(), e);
        }
    }

StreamRecordWriter

  • 调用RecordWriter.emit
    public void emit(T record) throws IOException, InterruptedException {
        checkErroneous();
        super.emit(record);
    }

RecordWriter

  • 调用emit
    public void emit(T record) throws IOException, InterruptedException {
        emit(record, channelSelector.selectChannels(record, numChannels));
    }
  • emit
  • 调用copyFromSerializerToTargetChannel(),该函数会往Channel中写数据,会触发WindowOperator
    private void emit(T record, int[] targetChannels) throws IOException, InterruptedException {
        serializer.serializeRecord(record);

        boolean pruneAfterCopying = false;
        for (int channel : targetChannels) {
            if (copyFromSerializerToTargetChannel(channel)) {
                pruneAfterCopying = true;
            }
        }

        // Make sure we don't hold onto the large intermediate serialization buffer for too long
        if (pruneAfterCopying) {
            serializer.prune();
        }
    }
  • copyFromSerializerToTargetChannel
/**
     * @param targetChannel
     * @return <tt>true</tt> if the intermediate serialization buffer should be pruned
     */
    private boolean copyFromSerializerToTargetChannel(int targetChannel) throws IOException, InterruptedException {
        // We should reset the initial position of the intermediate serialization buffer before
        // copying, so the serialization results can be copied to multiple target buffers.
        serializer.reset();

        boolean pruneTriggered = false;
        BufferBuilder bufferBuilder = getBufferBuilder(targetChannel);
        SerializationResult result = serializer.copyToBufferBuilder(bufferBuilder);
        while (result.isFullBuffer()) {
            numBytesOut.inc(bufferBuilder.finish());
            numBuffersOut.inc();

            // If this was a full record, we are done. Not breaking out of the loop at this point
            // will lead to another buffer request before breaking out (that would not be a
            // problem per se, but it can lead to stalls in the pipeline).
            if (result.isFullRecord()) {
                pruneTriggered = true;
                bufferBuilders[targetChannel] = Optional.empty();
                break;
            }

            bufferBuilder = requestNewBufferBuilder(targetChannel);
            result = serializer.copyToBufferBuilder(bufferBuilder);
        }
        checkState(!serializer.hasSerializedData(), "All data should be written at once");

        if (flushAlways) {
            targetPartition.flush(targetChannel);
        }
        return pruneTriggered;
    }

window operator(reduce)

WindowOperator

  • processElement,该函数,每次source进行flatMap,map,之后,即(a,1) 这样的元素调用emit之后,就会触发该函数调用,每一个元素进行emit之后,都会调用该函数
  • windowAssigner.assignWindows,把每一个元素分配给对应的window
  • 把该元素存到HeapReducingState.add()中, 这个state值在WindowOperator.windowState.stateTable.primaryTable.state 这个里边存着
  • add()调用transform,最终调用ReduceTransformation.apply,该函数会调用reduce函数,在同一次window中,每来一个相同key,就更新一次,实现累加,

    public V apply(V previousState, V value) throws Exception { return previousState != null ? reduceFunction.reduce(previousState, value) : value; }
  • 每一个元素都关联trigger,TriggerResult triggerResult = triggerContext.onElement(element)
  • triggerResult.isFire(),只有当前window完成才为true
public void processElement(StreamRecord<IN> element) throws Exception {
        final Collection<W> elementWindows = windowAssigner.assignWindows(
            element.getValue(), element.getTimestamp(), windowAssignerContext);

        //if element is handled by none of assigned elementWindows
        boolean isSkippedElement = true;

        final K key = this.<K>getKeyedStateBackend().getCurrentKey();

        if (windowAssigner instanceof MergingWindowAssigner) {
            MergingWindowSet<W> mergingWindows = getMergingWindowSet();

            for (W window: elementWindows) {

                // adding the new window might result in a merge, in that case the actualWindow
                // is the merged window and we work with that. If we don't merge then
                // actualWindow == window
                W actualWindow = mergingWindows.addWindow(window, new MergingWindowSet.MergeFunction<W>() {
                    @Override
                    public void merge(W mergeResult,
                            Collection<W> mergedWindows, W stateWindowResult,
                            Collection<W> mergedStateWindows) throws Exception {

                        if ((windowAssigner.isEventTime() && mergeResult.maxTimestamp() + allowedLateness <= internalTimerService.currentWatermark())) {
                            throw new UnsupportedOperationException("The end timestamp of an " +
                                    "event-time window cannot become earlier than the current watermark " +
                                    "by merging. Current watermark: " + internalTimerService.currentWatermark() +
                                    " window: " + mergeResult);
                        } else if (!windowAssigner.isEventTime() && mergeResult.maxTimestamp() <= internalTimerService.currentProcessingTime()) {
                            throw new UnsupportedOperationException("The end timestamp of a " +
                                    "processing-time window cannot become earlier than the current processing time " +
                                    "by merging. Current processing time: " + internalTimerService.currentProcessingTime() +
                                    " window: " + mergeResult);
                        }

                        triggerContext.key = key;
                        triggerContext.window = mergeResult;

                        triggerContext.onMerge(mergedWindows);

                        for (W m: mergedWindows) {
                            triggerContext.window = m;
                            triggerContext.clear();
                            deleteCleanupTimer(m);
                        }

                        // merge the merged state windows into the newly resulting state window
                        windowMergingState.mergeNamespaces(stateWindowResult, mergedStateWindows);
                    }
                });

                // drop if the window is already late
                if (isWindowLate(actualWindow)) {
                    mergingWindows.retireWindow(actualWindow);
                    continue;
                }
                isSkippedElement = false;

                W stateWindow = mergingWindows.getStateWindow(actualWindow);
                if (stateWindow == null) {
                    throw new IllegalStateException("Window " + window + " is not in in-flight window set.");
                }

                windowState.setCurrentNamespace(stateWindow);
                windowState.add(element.getValue());

                triggerContext.key = key;
                triggerContext.window = actualWindow;

                TriggerResult triggerResult = triggerContext.onElement(element);

                if (triggerResult.isFire()) {
                    ACC contents = windowState.get();
                    if (contents == null) {
                        continue;
                    }
                    emitWindowContents(actualWindow, contents);
                }

                if (triggerResult.isPurge()) {
                    windowState.clear();
                }
                registerCleanupTimer(actualWindow);
            }

            // need to make sure to update the merging state in state
            mergingWindows.persist();
        } else {
            for (W window: elementWindows) {

                // drop if the window is already late
                if (isWindowLate(window)) {
                    continue;
                }
                isSkippedElement = false;

                windowState.setCurrentNamespace(window);
                windowState.add(element.getValue());

                triggerContext.key = key;
                triggerContext.window = window;

                TriggerResult triggerResult = triggerContext.onElement(element);

                if (triggerResult.isFire()) {
                    ACC contents = windowState.get();
                    if (contents == null) {
                        continue;
                    }
                    emitWindowContents(window, contents);
                }

                if (triggerResult.isPurge()) {
                    windowState.clear();
                }
                registerCleanupTimer(window);
            }
        }

        // side output input event if
        // element not handled by any window
        // late arriving tag has been set
        // windowAssigner is event time and current timestamp + allowed lateness no less than element timestamp
        if (isSkippedElement && isElementLate(element)) {
            if (lateDataOutputTag != null){
                sideOutput(element);
            } else {
                this.numLateRecordsDropped.inc();
            }
        }
    }
  • onProcessingTime
  • 调window完成会调用onProcessingTime()函数
  • WindowOperator.processElement()中triggerContext.onElement(element),中的trigger最终当完成window时,会调用WindowOperator.onProcessingTime()
  • 取state中的数据,调用emitWindowContents()函数
public void onProcessingTime(InternalTimer<K, W> timer) throws Exception {
        triggerContext.key = timer.getKey();
        triggerContext.window = timer.getNamespace();

        MergingWindowSet<W> mergingWindows;

        if (windowAssigner instanceof MergingWindowAssigner) {
            mergingWindows = getMergingWindowSet();
            W stateWindow = mergingWindows.getStateWindow(triggerContext.window);
            if (stateWindow == null) {
                // Timer firing for non-existent window, this can only happen if a
                // trigger did not clean up timers. We have already cleared the merging
                // window and therefore the Trigger state, however, so nothing to do.
                return;
            } else {
                windowState.setCurrentNamespace(stateWindow);
            }
        } else {
            windowState.setCurrentNamespace(triggerContext.window);
            mergingWindows = null;
        }

        TriggerResult triggerResult = triggerContext.onProcessingTime(timer.getTimestamp());

        if (triggerResult.isFire()) {
            ACC contents = windowState.get();
            if (contents != null) {
                emitWindowContents(triggerContext.window, contents);
            }
        }

        if (triggerResult.isPurge()) {
            windowState.clear();
        }

        if (!windowAssigner.isEventTime() && isCleanupTime(triggerContext.window, timer.getTimestamp())) {
            clearAllState(triggerContext.window, windowState, mergingWindows);
        }

        if (mergingWindows != null) {
            // need to make sure to update the merging state in state
            mergingWindows.persist();
        }
    }

emitWindowContents

    private void emitWindowContents(W window, ACC contents) throws Exception {
        timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());
        processContext.window = window;
        userFunction.process(triggerContext.key, window, processContext, contents, timestampedCollector);
    }

SinkStream(PrintSinkFunction)

InternalSingleValueWindowFunction

  • PassThroughWindowFunction.apply
    public void process(KEY key, W window, InternalWindowContext context, IN input, Collector<OUT> out) throws Exception {
        wrappedFunction.apply(key, window, Collections.singletonList(input), out);
    }

PassThroughWindowFunction

  • TimestampedCollector.collect
    public void apply(K k, W window, Iterable<T> input, Collector<T> out) throws Exception {
        for (T in: input) {
            out.collect(in);
        }
    }

TimestampedCollector

  • AbstractStreamOperator.CountingOutput.collect
    public void collect(T record) {
        output.collect(reuse.replace(record));
    }

AbstractStreamOperator.CountingOutput

  • OperatorChain.CopyingChainingOutput.collect
        public void collect(StreamRecord<OUT> record) {
            numRecordsOut.inc();
            output.collect(record);
        }

OperatorChain.CopyingChainingOutput

  • pushToOperator
        public void collect(StreamRecord<T> record) {
            if (this.outputTag != null) {
                // we are only responsible for emitting to the main input
                return;
            }

            pushToOperator(record);
        }
  • pushToOperator
  • StreamSink.processElement

protected <X> void pushToOperator(StreamRecord<X> record) {
            try {
                // we know that the given outputTag matches our OutputTag so the record
                // must be of the type that our operator (and Serializer) expects.
                @SuppressWarnings("unchecked")
                StreamRecord<T> castRecord = (StreamRecord<T>) record;

                numRecordsIn.inc();
                StreamRecord<T> copy = castRecord.copy(serializer.copy(castRecord.getValue()));
                operator.setKeyContextElement1(copy);
                operator.processElement(copy);
            } catch (ClassCastException e) {
                if (outputTag != null) {
                    // Enrich error message
                    ClassCastException replace = new ClassCastException(
                        String.format(
                            "%s. Failed to push OutputTag with id '%s' to operator. " +
                                "This can occur when multiple OutputTags with different types " +
                                "but identical names are being used.",
                            e.getMessage(),
                            outputTag.getId()));

                    throw new ExceptionInChainedOperatorException(replace);
                } else {
                    throw new ExceptionInChainedOperatorException(e);
                }
            } catch (Exception e) {
                throw new ExceptionInChainedOperatorException(e);
            }

        }
    }

StreamSink

  • PrintSinkFunction.invoke 打印输出
        sinkContext.element = element;
        userFunction.invoke(element.getValue(), sinkContext);
    }
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
存储 缓存 资源调度
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
905 0
想了解流计算,你必须得看一眼,实现Flink on Yarn的三种部署方式,并运行wordcount
|
6月前
|
Oracle 关系型数据库 数据处理
实时计算 Flink版产品使用合集之本地local模式下断点续传可以操作吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
46 0
|
1月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
45 0
|
3月前
|
缓存 流计算
Flink 新一代流计算和容错问题之 Flink 作业的 local buffer pool 的 size 要如何估算
Flink 新一代流计算和容错问题之 Flink 作业的 local buffer pool 的 size 要如何估算
|
5月前
|
Java 流计算
Flink中异步AsyncIO的实现 (源码分析)
Flink中异步AsyncIO的实现 (源码分析)
|
6月前
|
Java Maven 流计算
在Docker跑通Flink分布式版本的WordCount
在Docker跑通Flink分布式版本的WordCount
59 0
|
6月前
|
消息中间件 分布式计算 Hadoop
Flink(一)【WordCount 快速入门】
Flink(一)【WordCount 快速入门】
|
数据库 流计算
在Flink CDC中,本地模式(Local Mode)是指Flink任务在单个节点上运行
在Flink CDC中,本地模式(Local Mode)是指Flink任务在单个节点上运行
190 1
|
SQL API 流计算
Flink SQL代码补全提示(源码分析)
Flink SQL代码补全提示(源码分析)
70 0

热门文章

最新文章