【最全资料下载】Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 直播讲师:丁来强(成喆)——阿里高级技术专家,从事阿里云日志服务相关的产品与研发工作,擅长AIOps/SecOps的大数据分析平台构建与场景落地,擅长C++与Python语言等。PyCon历届讲师,曾经在中国PyCon2015、2016与2018分享过7场/6个不同议题,覆盖Jupyter扩展、大数据分析可视化、工作流调度、函数式、设计模式、Python核心语言等方面,广受好评。

直播讲师:丁来强(成喆)——阿里高级技术专家,从事阿里云日志服务相关的产品与研发工作,擅长AIOps/SecOps的大数据分析平台构建与场景落地,擅长C++与Python语言等。
PyCon历届讲师,曾经在中国PyCon2015、2016与2018分享过7场/6个不同议题,覆盖Jupyter扩展、大数据分析可视化、工作流调度、函数式、设计模式、Python核心语言等方面,广受好评。

第一讲——使用IPython/Jupyter Notebook与日志服务玩转超大规模数据分析与可视化

直播介绍:IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。阿里云日志服务作为阿里商业操作系统的智能运维平台,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能。这里介绍如何借助日志服务对IPython/Jupyter扩展的功能,用Python对海量数据进行深度加工(ETL)、交互式分析(通过SQL、DataFrame)、机器学习与可视化等。

PPT下载:https://yq.aliyun.com/download/3322
直播回顾:https://yq.aliyun.com/live/875


第二讲——流畅的Python数据处理及大数据处理ETL

直播时间:3月6日(周三)20:00—21:00

直播介绍:大数据分析中常常要对数据进行规整(ETL),而Python内置强大的数据结构以及语法(如推导式、切片、函数式编程等)对于数据处理又非常友好。本节介绍如何灵活、流畅地使用这些特性,在日志服务场景中对大规模不规则日志进行常规ETL操作。

PPT下载:https://yq.aliyun.com/download/3338
直播回顾:https://yq.aliyun.com/live/910


第三讲—— Python3舒适性编程与兼容Py2/3实践

直播时间:3月13日(周三)20:00—21:00

直播介绍:Python3有许多“舒适编程”的特性,而Python2也即将EOL,但Py2/Py3并存的局面可预见的还是会保持一段时间。本节介绍Py3一些不错亮点,以及如何兼顾Py2/Py3的一些实践。

ppt下载:https://yq.aliyun.com/download/3344
视频回顾:https://yq.aliyun.com/live/918


第四讲——Python并发编程与实时大数据处理监控

直播时间:3月20日(周三)20:00—21:00

直播介绍: Python多线程、多进程编程该如何做?如何避开GIL?本节以日志服务消费组模型为例,介绍相关原理实践以及如何做实时大数据的处理与监控。

ppt下载:https://yq.aliyun.com/download/3389
直播回顾:https://yq.aliyun.com/live/932


第五讲——Python日志最佳实践与日志上云实战

直播时间:3月27日(周三)20:00—21:00

直播介绍:良好的日志实践可以帮助后续的开发排错、运营维护监控管理工作大大提高效率,本节介绍使用Python的日志模块的最佳实践,并轻松上云,利用日志服务提高产品运维效率。

PPT链接:https://yq.aliyun.com/download/3469
视频回顾:https://yq.aliyun.com/live/949


第六讲——改造Python对象模块的实用技巧及日志服务ETL插件原理
直播时间:4月3日(周三)20:00—21:00

直播介绍: Python作为动态语言,插件与模块机制非常强大,在编写框架类程序时尤其有用,本节深入浅出的介绍Python的语言扩展能力,以及日志服务中的CLI插件机制原理。

资料下载:https://yq.aliyun.com/download/3483
直播回顾:https://yq.aliyun.com/live/969

欢迎加入python技术进阶钉群收看直播及往期回顾


_2019_01_15_10_28_39


或点击链接:http://tb.cn/UQkRRHw

  • 详情

4a7942c6_3fb4_4b6f_aa32_2884dfbe7f36

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
20天前
|
存储 监控 API
【Azure App Service】分享使用Python Code获取App Service的服务器日志记录管理配置信息
本文介绍了如何通过Python代码获取App Service中“Web服务器日志记录”的配置状态。借助`azure-mgmt-web` SDK,可通过初始化`WebSiteManagementClient`对象、调用`get_configuration`方法来查看`http_logging_enabled`的值,从而判断日志记录是否启用及存储方式(关闭、存储或文件系统)。示例代码详细展示了实现步骤,并附有执行结果与官方文档参考链接,帮助开发者快速定位和解决问题。
75 23
|
1月前
|
API 开发工具 Python
|
5月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
224 5
|
2月前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
6439 10
|
2月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
|
5月前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
6月前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
94 2
|
6月前
|
Python Windows
python知识点100篇系列(24)- 简单强大的日志记录器loguru
【10月更文挑战第11天】Loguru 是一个功能强大的日志记录库,支持日志滚动、压缩、定时删除、高亮和告警等功能。安装简单,使用方便,可通过 `pip install loguru` 快速安装。支持将日志输出到终端或文件,并提供丰富的配置选项,如按时间或大小滚动日志、压缩日志文件等。还支持与邮件通知模块结合,实现邮件告警功能。
125 0
python知识点100篇系列(24)- 简单强大的日志记录器loguru
|
5月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集

热门文章

最新文章

下一篇
oss创建bucket