基于快速GeoHash,如何实现海量商品与商圈的高效匹配?

简介: 闲鱼是一款闲置物品的交易平台APP。通过这个平台,全国各地“无处安放”的物品能够轻松实现流动。这种分享经济业务形态被越来越多的人所接受,也进一步实现了低碳生活的目标。 今天,闲鱼团队就商品与商圈的匹配算法为我们展开详细解读。

image

小叽导读:闲鱼是一款闲置物品的交易平台APP。通过这个平台,全国各地“无处安放”的物品能够轻松实现流动。这种分享经济业务形态被越来越多的人所接受,也进一步实现了低碳生活的目标。

今天,闲鱼团队就商品与商圈的匹配算法为我们展开详细解读。

摘要
闲鱼app根据交通条件、商场分布情况、住宅区分布情况综合考虑,将城市划分为一个个商圈。杭州部分区域商圈划分如下图所示。
image
闲鱼的商品是由用户发布的GPS随机分布在地图上的点数据。当用户处于某个商圈范围内时,app会向用户推荐GPS位于此商圈中的商品。要实现精准推荐服务,就需要计算出哪些商品是归属于你所处的商圈。

在数据库中,商圈是由多个点围成的面数据,这些面数据形状、大小各异,且互不重叠。商品是以GPS标记的点数据,如何能够快速高效地确定海量商品与商圈的归属关系呢?传统而直接的方法是,利用几何学的空间关系计算公式对海量数据实施直接的“点—面”关系计算,来确定每一个商品是否位于每一个商圈内部。

闲鱼目前有10亿商品数据,且每天还在快速增加。全国所有城市的商圈数量总和大约为1万,每个商圈的大小不一,边数从10到80不等。如果直接使用几何学点面关系运算,需要的计算量级约为2亿亿次基本运算。按照这个思路,我们尝试过使用阿里巴巴集团内部的离线计算集群来执行计算,结果集群在运行了超过2天之后也未能给出结果。

经过算法改进,我们采用了一种基于GeoHash精确匹配,结合GeoHash非精确匹配并配合小范围几何学关系运算精匹配的算法,大大降低了计算量,高效地实现了离线环境下海量点-面数据的包含关系计算。同样是对10亿条商品和1万条商圈数据做匹配,可以在1天内得到结果。

▌点数据GeoHash原理与算法

GeoHash是一种对地理坐标进行编码的方法,它将二维坐标映射为一个字符串。每个字符串代表一个特定的矩形,在该矩形范围内的所有坐标都共用这个字符串。字符串越长精度越高,对应的矩形范围越小。

对一个地理坐标编码时,按照初始区间范围纬度[-90,90]和经度[-180,180],计算目标经度和纬度分别落在左区间还是右区间。落在左区间则取0,右区间则取1。然后,对上一步得到的区间继续按照此方法对半查找,得到下一位二进制编码。当编码长度达到业务的进度需求后,根据“偶数位放经度,奇数位放纬度”的规则,将得到的二进制编码穿插组合,得到一个新的二进制串。最后,根据base32的对照表,将二进制串翻译成字符串,即得到地理坐标对应的目标GeoHash字符串。

以坐标“30.280245, 120.027162”为例,计算其GeoHash字符串。首先对纬度做二进制编码:

将[-90,90]平分为2部分,“30.280245”落在右区间(0,90],则第一位取1。

将(0,90]平分为2分,“30.280245”落在左区间(0,45],则第二位取0。

不断重复以上步骤,得到的目标区间会越来越小,区间的两个端点也越来越逼近“30.280245”。

下图的流程详细地描述了前几次迭代的过程:
image
按照上面的流程,继续往下迭代,直到编码位数达到我们业务对精度的需求为止。完整的15位二进制编码迭代表格如下:
image
得到的纬度二进制编码为10101 01100 01000。

按照同样的流程,对经度做二进制编码,具体迭代详情如下:
image
得到的经度二进制编码为11010 10101 01101。

按照“偶数位放经度,奇数位放纬度”的规则,将经纬度的二进制编码穿插,得到完成的二进制编码为:11100 11001 10011 10010 00111 00010。由于后续要使用的是base32编码,每5个二进制数对应一个32进制数,所以这里将每5个二进制位转换成十进制位,得到28,25,19,18,7,2。 对照base32编码表,得到对应的编码为:wtmk72。
image
可以在geohash.org/网站对上述结果进行验证,验证结果如下:

image
验证结果的前几位与我们的计算结果一致。如果我们利用二分法获取二进制编码时迭代更多次,就会得到验证网站中这样的位数更多的更精确结果。

GeoHash字符串的长度与精度的对应关系如下:
image
**▌面数据GeoHash编码实现
**
上一节介绍的标准GeoHash算法只能用来计算二维点坐标对应的GeoHash编码,我们的场景中还需要计算面数据(即GIS中的POLYGON多边形对象)对应的GeoHash编码,需要扩展算法来实现。

算法思路是,先找到目标Polygon的最小外接矩形MBR,计算此MBR西南角坐标对应的GeoHash编码。然后用GeoHash编码的逆算法,反解出此编码对应的矩形GeoHash块。以此GeoHash块为起点,循环往东、往北找相邻的同等大小的GeoHash块,直到找到的GeoHash块完全超出MBR的范围才停止。如此找到的多个GeoHash块,边缘上的部分可能与目标Polygon完全不相交,这部分块需要通过计算剔除掉,如此一来可以减少后续不必要的计算量。
image
上面的例子中最终得到的结果高清大图如下,其中蓝色的GeoHash块是与原始Polygon部分相交的,橘黄色的GeoHash块是完全被包含在原始Polygon内部的。
image
上述算法总结成流程图如下:
image
▌求临近GeoHash块的快速算法

上一节对面数据进行GeoHash编码的流程图中标记为绿色和橘黄色的两步,分别是要寻找相邻的东边或北边的GeoHash字符串。

传统的做法是,根据当前GeoHash块的反解信息,求出相邻块内部的一点,在对这个点做GeoHash编码,即为相邻块的GeoHash编码。如下图,我们要计算"wtmk72"周围的8个相邻块的编码,就要先利用GeoHash逆算法将"wtmk72"反解出4个顶点的坐标N1、N2、N3、N4,然后由这4个坐标计算出右侧邻接块内部的任意一点坐标N5,再对N5做GeoHash编码,得到的“wtmk78”就是我们要求的右边邻接块的编码。按照同样的方法,求可以求出"wtmk72"周围总共8个邻接块的编码。
image
这种方法需要先解码一次再编码一次,比较耗时,尤其是在指定的GeoHash字符串长度较长需要循环较多次的情况下。

通过观察GeoHash编码表的规律,结合GeoHash编码使用的Z阶曲线的特性,验证了一种通过查表来快速求相邻GeoHash字符串的方法。

还是以“wtmk72”这个GeoHash字符串为例,对应的10进制数是“28,25,19,18,7,2”,转换成二进制就是11100 11001 10011 10010 00111 00010。其中,w对应11100,这5个二进制位分别代表“经 纬 经 纬 经”;t对应11001,这5个二进制位分别代表“纬 经 纬 经 纬”。由此推广开来可知,GeoHash中的奇数位字符(本例中的'w'、'm'、'7')代表的二进制位分别对应“经 纬 经 纬 经”,偶数位字符(本例中的't'、'k'、'2')代表的二进制位分别对应“纬 经 纬 经 纬”。

'w'的二进制11100,转换成方位含义就是“右 上 右 下 左”。't'的二进制11001,转换成方位含义就是“上 右 下 左 上”。

根据这个字符与方位的转换关系,我们可以知道,奇数位上的字符与位置对照表如下:
image
偶数位上的字符与位置对照表如下:
image
这里可以看到一个很有意思的现象,奇数位的对照表和偶数位对照表存在一种转置和翻转的关系。

有了以上两份字符与位置对照表,就可以快速得出每个字符周围的8个字符分别是什么。而要计算一个给定GeoHash字符串周围8个GeoHash值,如果字符串最后一位字符在该方向上未超出边界,则前面几位保持不变,最后一位取此方向上的相邻字符即可;如果最后一位在此方向上超出了对照表边界,则先求倒数第二个字符在此方向上的相邻字符,再求最后一个字符在此方向上相邻字符(对照表环状相邻字符);如果倒数第二位在此方向上的相邻字符也超出了对照表边界,则先求倒数第三位在此方向上的相邻字符。以此类推。

以上面的“wtmk72”举例,要求这个GeoHash字符串的8个相邻字符串,实际就是求尾部字符‘2’的相邻字符。‘2’适用偶数对照表,它的8个相邻字符分别是‘1’、‘3’、‘9’、‘0’、‘8’、‘p’、‘r’、‘x’,其中‘p’、‘r’、‘x’已经超出了对照表的下边界,是将偶数位对照表上下相接组成环状得到的相邻关系。所以,对于这3个超出边界的“下方”相邻字符,需要求倒数第二位的下方相邻字符,即‘7’的下方相邻字符。‘7’是奇数位,适用奇数位对照表,‘7’在对照表中的“下方”相邻字符是‘5’,所以“wtmk72”的8个相邻GeoHash字符串分别是“wtmk71”、“wtmk73”、“wtmk79”、“wtmk70”、“wtmk78”、“wtmk5p”、“wtmk5r”、“wtmk5x”。利用此相邻字符串快速算法,可以大大提高上一节流程图中面数据GeoHash编码算法的效率。

▌高效建立海量点数据与面数据的关系

建立海量点数据与面数据的关系的思路是,先将需要匹配的商品GPS数据(点数据)、商圈AOI数据(面数据)按照前面所述的算法,分别计算同等长度的GeoHash编码。每个点数据都对应唯一一个GeoHash字符串;每个面数据都对应一个或多个GeoHash编码,这些编码要么是“完全包含字符串”,要么是“部分包含字符串”。

a)将每个商品的GeoHash字符串与商圈的“完全包含字符串”进行join操作。join得到的结果中出现的<商品,商圈>数据就是能够确定的“某个商品属于某个商圈”的关系。

b)对于剩下的还未被确定关系的商品,将这些商品的GeoHash字符串与商圈的“部分包含字符串”进行join操作。join得到的结果中出现的<商品,商圈>数据是有可能存在的“商品属于某个商圈”的关系,接下来对这批数据中的商品gps和商圈AOI数据进行几何学关系运算,进而从中筛选出确定的“商品属于某个商圈”的关系。

如图,商品1的点数据GeoHash编码为"wtmk70j",与面数据的“完全包含字符串wtmk70j”join成功,所以可以直接确定商品1属于此面数据。

商品2的点数据GeoHash编码为“wtmk70r”,与面数据的“部分包含字符串wtmk70r”join成功,所以商品2疑似属于面数据,具体是否存在包含关系,还需要后续的点面几何学计算来确定。 商品3的点数据GeoHash编码与面数据的任何GeoHash块编码都匹配不上,所以可以快速确定商品3不属于此面数据。
image
实际应用中,原始的海量商品GPS范围散布在全国各地,海量商圈数据也散布在全国各个不同的城市。经过a)步骤的操作后,大部分的商品数据已经确定了与商圈的从属关系。剩下的未能匹配上的商品数据,经过b)步骤的GeoHash匹配后,可以将后续“商品-商圈几何学计算”的运算量从“1个商品 x 全国所有商圈”笛卡尔积的量级,降低为“1个商品 x 1个(或几个)商圈”笛卡尔积的量级,减少了绝大部分不必要的几何学运算,而这部分运算是非常耗时的。

在闲鱼的实际应用中,10亿商品和1万商圈数据,使用本文的快速算法,只需要 10亿次GeoHash点编码 + 1万次GeoHash面编码 + 500万次“点是否在面内部”几何学运算,粗略换算为基本运算需要的次数约为1800亿次,运算量远小于传统方法的2亿亿次基本运算。使用阿里巴巴的离线计算平台,本文的算法在不到一天的时间内就完成了全部计算工作。

另外,对于给定的点和多边形,通过几何学计算包含关系的算法不止一种,最常用的算法是射线法。简单来说,就是从这个点出发做一条射线,判断该射线与多边形的交点个数是奇数还是偶数。如果是奇数,说明点在多边形内;否则,点在多边形外。

▌延伸

面对海量点面数据的空间关系划分,本文采用是的通过GeoHash来降低计算量的思路,本质上来说是利用了空间索引的思想。事实上,在GIS领域有多种实用的空间索引,常见的如R树系列(R树、R+树、R*树)、四叉树、K-D树、网格索引等,这些索引算法各有特点。本文的思路不仅能用来处理点—面关系的相关问题,还可以用来快速处理点—点关系、面—面关系、点—线关系、线—线关系等问题,比如快速确定大范围类的海量公交站台与道路的从属关系、多条道路或铁路是否存在交点等问题。

原文发布时间为:2018-07-12
本文作者:峰明
本文来自云栖社区合作伙伴“ 阿里技术”,了解相关信息可以关注“ 阿里技术”。

相关文章
|
7月前
|
C# 开发者
C# 7.0 中的元组:多值返回与结构化数据的便捷之道
【1月更文挑战第7天】C# 7.0 引入了元组作为一等公民,为开发者提供了一种方便的方式来返回多个值和处理结构化数据。元组不仅使方法能够返回多个不同类型的值,还通过语义化的命名提高了代码的可读性和可维护性。本文将探讨C# 7.0中元组的概念、特性、用法以及它们如何提升编程效率和代码质量。
|
缓存 搜索推荐 算法
Java排序实战:如何高效实现电商产品排序
在当今的数字化时代,电子商务已成为人们日常生活的重要组成部分。消费者可以在电商平台上浏览和购买来自全球的商品,这无疑为我们的生活带来了极大的便利。然而,随着电商平台的规模不断扩大,商品数量的急剧增加,如何对海量商品进行高效排序成为了电商系统开发的一大挑战。
|
前端开发
47分布式电商项目 - 商品关键字搜索
47分布式电商项目 - 商品关键字搜索
43 0
47分布式电商项目 - 商品关键字搜索
|
机器学习/深度学习 存储 算法
用图技术搞定附近好友、时空交集等 7 个典型社交网络应用
在你的社交网络中,谁和你关系亲密?谁又和你互动最多?谁和你有很多共同好友,彼此还不认识呢?本文,用了图技术来解决 7 个常见的社交推荐场景。
231 0
|
SQL 数据挖掘
白话Elasticsearch39-深入聚合数据分析之案例实战_搜索+聚合: 统计指定品牌下每个颜色的销量
白话Elasticsearch39-深入聚合数据分析之案例实战_搜索+聚合: 统计指定品牌下每个颜色的销量
144 0
|
数据挖掘
白话Elasticsearch41-深入聚合数据分析之案例实战__过滤+聚合:统计价格大于2000的电视平均价格
白话Elasticsearch41-深入聚合数据分析之案例实战__过滤+聚合:统计价格大于2000的电视平均价格
95 0
|
存储 算法 Java
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
295 0
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
|
机器学习/深度学习 存储 人工智能
毫秒级!千万人脸库快速比对,上亿商品图片检索,背后的极速检索用了什么神器? ⛵
为了让计算机理解、处理和表征非结构化数据,我们通常将其转换为密集向量,而海量向量数据的存储、管理和查询并不简单。本文介绍 Milvus 这个开源向量数据库管理平台的优势、架构和使用案例,了解其在简化『机器学习操作(MLOps)』流程中的应用
5163 2
毫秒级!千万人脸库快速比对,上亿商品图片检索,背后的极速检索用了什么神器? ⛵
|
7月前
|
算法 关系型数据库 分布式数据库
如何用 PolarDB 整合age算法插件, 实现图式搜索加速 - 刑侦、社交、风控、族谱、推荐等业务图谱类关系数据搜索
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB结合图式算法, 实现高效率的刑侦、社交、风控、族谱、推荐等业...
223 0
|
7月前
|
搜索推荐 关系型数据库 分布式数据库
使用 PolarDB 开源版 采用array数组和gin索引高效率解决用户画像、实时精准营销类业务需求
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版高效率解决用户画像、实时精准营销类业务需求测试...
110 0
下一篇
DataWorks