Tensorflow源码解析4 -- 图的节点 - Operation

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: # 1 概述 上文讲述了TensorFlow的核心对象,计算图Graph。Graph包含两大成员,节点和边。节点即为计算算子Operation,边则为计算数据Tensor。由起始节点Source出发,按照Graph的拓扑顺序,依次执行节点的计算,即可完成整图的计算,最后结束于终止节点Sink,并输出计算结果。 本文会对节点Operation进行详细讲解。 # 2 前端节点数据

1 概述

上文讲述了TensorFlow的核心对象,计算图Graph。Graph包含两大成员,节点和边。节点即为计算算子Operation,边则为计算数据Tensor。由起始节点Source出发,按照Graph的拓扑顺序,依次执行节点的计算,即可完成整图的计算,最后结束于终止节点Sink,并输出计算结果。

本文会对节点Operation进行详细讲解。

2 前端节点数据结构

在Python前端中,Operation表示Graph的节点,Tensor表示Graph的边。Operation包含OpDef和NodeDef两个主要成员变量。其中OpDef描述了op的静态属性信息,例如op入参列表,出参列表等。而NodeDef则描述op的动态属性信息,例如op运行的设备信息,用户给op设置的name等。

先来看Operation的数据结构,只列出重要代码。

@tf_export("Operation")
class Operation(object):
  def __init__(self,
               node_def,
               g,
               inputs=None,
               output_types=None,
               control_inputs=None,
               input_types=None,
               original_op=None,
               op_def=None):
     # graph引用,通过它可以拿到Operation所注册到的Graph
     self._graph = g
    
    # inputs
    if inputs is None:
      inputs = []

    #  input types
    if input_types is None:
      input_types = [i.dtype.base_dtype for i in inputs]

    # control_input_ops
    control_input_ops = []
    
    # node_def和op_def是两个最关键的成员
    if not self._graph._c_graph:
      self._inputs_val = list(inputs)  # Defensive copy.
      self._input_types_val = input_types
      self._control_inputs_val = control_input_ops
      
      # NodeDef,深复制
      self._node_def_val = copy.deepcopy(node_def)
        
      # OpDef
      self._op_def_val = op_def
      
    # outputs输出
    self._outputs = [
        Tensor(self, i, output_type)
        for i, output_type in enumerate(output_types)
    ]

下面来看Operation的属性方法,通过属性方法我们可以拿到Operation的两大成员,即OpDef和NodeDef。

  @property
  def name(self):
    # Operation的name,注意要嵌套name_scope
    return self._node_def_val.name

  @property
  def _id(self):
    # Operation的唯一标示,id
    return self._id_value

  @property
  def device(self):
    # Operation的设备信息
    return self._node_def_val.device
    
  @property
  def graph(self):
    # graph引用
    return self._graph

  @property
  def node_def(self):
    # NodeDef成员,获取Operation的动态属性信息,例如Operation分配到的设备信息,Operation的name等
    return self._node_def_val

  @property
  def op_def(self):
    # OpDef,获取Operation的静态属性信息,例如Operation入参列表,出参列表等
    return self._op_def_val

3 后端节点数据结构

在C++后端中,Graph图也包含两部分,即边Edge和节点Node。同样,节点Node用来表示计算算子,而边Edge则表示计算数据或者Node间依赖关系。Node数据结构如下所示。

class Node {
 public:
    // NodeDef,节点算子Operation的信息,比如op分配到哪个设备上了等,运行时有可能变化。
      const NodeDef& def() const;
    
    // OpDef, 节点算子Operation的元数据,不会变的。比如Operation的入参个数,名字等
      const OpDef& op_def() const;
 private:
      // 输入边,传递数据给节点。可能有多条
      EdgeSet in_edges_;

      // 输出边,节点计算后得到的数据。可能有多条
      EdgeSet out_edges_;
}

节点Node中包含的主要数据有输入边和输出边的集合,从而能够由Node找到跟他关联的所有边。Node中还包含NodeDef和OpDef两个成员。NodeDef表示节点算子的动态属性,创建Node时会new一个NodeDef对象。OpDef表示节点算子的静态属性,运行时不会变,创建Node时不需要new OpDef,只需要从OpDef仓库中取出即可。因为元信息是确定的,比如Operation的入参列表,出参列表等。

目录
相关文章
|
5天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
18 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
60 0
|
5天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
18天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
38 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
53 5
|
1月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
111 5
|
1月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
1月前
|
算法 Java 程序员
Map - TreeSet & TreeMap 源码解析
Map - TreeSet & TreeMap 源码解析
34 0

推荐镜像

更多