Tensorflow源码解析1 -- 内核架构和源码结构

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: # 1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研

1 主流深度学习框架对比

当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研发,以便能占领市场。当前的框架有数十种之多,主流的如下(截止到2018年11月)

显然TensorFlow是独一无二的王者。第二名Keras,它是对TensorFlow或Theano接口的二次封装,严格意义上并不是一个独立的深度学习框架。TensorFlow目前也已经集成了Keras,使得安装了TensorFlow的用户就可以直接使用Keras了。

TensorFlow之所以能够从数十种框架中脱颖而出,主要优点有

  1. 出身高贵,是谷歌出品的。但其他很多框架出身也不差,例如PyTorch之于Facebook,MXNET之于Amazon
  2. 2015年就开源了,比较早的俘获了一大批开发者。这个确实是tf的一大先发优势,但PyTorch的前身Caffe,以及MXNET开源时间都不晚,而且Caffe流行时间比tf早,后来才被赶超的。更有Theano这样的绝对老前辈。由此可见,软件开源是多么重要。目前流行的深度学习框架也基本都开源了。
  3. 支持的开发语言多,支持Python Java Go C++等多种流行语言。相比某些框架,确实是优势很大。相比MXNET则小巫见大巫了。MXNET早期发展的一个主要方向就是前端多语言的支持,连MATLAB R Julia等语言都支持了。
  4. 运行效率高。早期的时候,其实tf的运行效率比很多框架都要低一些的。
  5. 安装容易,用户上手快,文档齐全,社区活跃。这个是tf的一个较大优势,特别是社区方面,也就是我们常说的生态优势。互联网头部集中效应十分明显,体现在开源软件上也是一样。这也是我认为最大的一个优势。

总结起来,TensorFlow虽然每个方面都不是绝对领先的优势,但贵在每个方面都做的不错,因此最终能够一骑绝尘,独领风骚。

学习Tensorflow框架内核,可以理解前端接口语言的支持,session生命周期,graph的构建、分裂和执行,operation的注册和运行,模块间数据通信,本地运行和分布式运行模式,以及CPU GPU TPU等异构设备的封装支持等。学习这些,对于模型的压缩 加速 优化等都是大有裨益的。

2 TensorFlow系统架构

TensorFlow设计十分精巧,基于分层和模块化的设计思想进行开发的。框架如下图

整个框架以C API为界,分为前端和后端两大部分。

  1. 前端:提供编程模型,多语言的接口支持,比如Python Java C++等。通过C API建立前后端的连接,后面详细讲解。
  2. 后端:提供运行环境,完成计算图的执行。进一步分为4层

    1. 运行时:分为分布式运行时和本地运行时,负责计算图的接收,构造,编排等。
    2. 计算层:提供各op算子的内核实现,例如conv2d, relu等
    3. 通信层:实现组件间数据通信,基于GRPC和RDMA两种通信方式
    4. 设备层:提供多种异构设备的支持,如CPU GPU TPU FPGA等

模型构造和执行流程

TensorFlow的一大特点是,图的构造和执行相分离。用户添加完算子,构建好整图后,才开始进行训练和执行,也就是图的执行。大体流程如下

  1. 图构建:用户在client中基于TensorFlow的多语言编程接口,添加算子,完成计算图的构造。
  2. 图传递:client开启session,通过它建立和master之间的连接。执行session.run()时,将构造好的graph序列化为graphDef后,以protobuf的格式传递给master。
  3. 图剪枝:master根据session.run()传递的fetches和feeds列表,反向遍历全图full graph,实施剪枝,得到最小依赖子图
  4. 图分裂:master将最小子图分裂为多个Graph Partition,并注册到多个worker上。一个worker对应一个Graph Partition。
  5. 图二次分裂:worker根据当前可用硬件资源,如CPU GPU,将Graph Partition按照op算子设备约束规范(例如tf.device('/cpu:0'),二次分裂到不同设备上。每个计算设备对应一个Graph Partition。
  6. 图运行:对于每一个计算设备,worker依照op在kernel中的实现,完成op的运算。设备间数据通信可以使用send/recv节点,而worker间通信,则使用GRPC或RDMA协议。

3 前端多语言实现 - swig包装器

TensorFlow提供了很多种语言的前端接口,使得用户可以通过多种语言来完成模型的训练和推断。其中Python支持得最好。这也是TensorFlow之所以受欢迎的一大原因。前端多语言是怎么实现的呢?这要归功于swig包装器。

swig是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。在TensorFlow使用bazel编译时,swig会生成两个wrapper文件

  1. pywrap_tensorflow_internal.py:对接上层Python调用
  2. pywrap_tensorflow_internal.cc:对接底层C API调用。

pywrap_tensorflow_internal.py 模块被导入时,会加载_pywrap_tensorflow_internal.so动态链接库,它里面包含了所有运行时接口的符号。而pywrap_tensorflow_internal.cc中,则注册了一个函数符号表,实现Python接口和C接口的映射。运行时,就可以通过映射表,找到Python接口在C层的实现了。

4 tensorflow 源码结构

TensorFlow源码基本也是按照框架分层来组织文件的。如下

其中core为tf的核心,它的源码结构如下

5 总结

TensorFlow框架设计精巧,代码量也很大,我们可以从以下部分逐步学习

  1. TensorFlow内核架构和源码结构。先从全局上对框架进行理解。
  2. 前后端连接的桥梁--Session,重点理解session的生命周期,并通过相关源码可以加深理解Python前端如何调用底层C实现。
  3. TensorFlow核心对象—Graph。图graph是TensorFlow最核心的对象,基本都是围绕着它来进行的。graph的节点为算子operation,边为数据tensor。
  4. TensorFlow图的节点 -- Operation。operation是图graph的节点,承载了计算算子。
  5. TensorFlow图的边 -- Tensor。Tensor是图graph的边,承载了计算的数据。
  6. TensorFlow本地运行时。
  7. TensorFlow分布式运行时。和本地运行时有一些共用的接口,但区别也很大。
  8. TensorFlow设备层。主要了解设备层的定义规范,以及实现。
  9. TensorFlow队列和并行运算。
  10. TensorFlow断点检查checkpoint,模型保存Saver,以及可视化tensorboard。这三个为TensorFlow主要的工具。
目录
相关文章
|
2天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
9天前
|
边缘计算 自动驾驶 5G
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
12天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
41 10
|
9天前
|
消息中间件 编解码 开发者
深入解析 Flutter兼容鸿蒙next全体生态的横竖屏适配与多屏协作兼容架构
本文深入探讨了 Flutter 在屏幕适配、横竖屏切换及多屏协作方面的兼容架构。介绍了 Flutter 的响应式布局、逻辑像素、方向感知、LayoutBuilder 等工具,以及如何通过 StreamBuilder 和 Provider 实现多屏数据同步。结合实际应用场景,如移动办公和教育应用,展示了 Flutter 的强大功能和灵活性。
80 6
|
8天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
27 3
|
9天前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
28 1
|
11天前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
26 1
|
16天前
|
缓存 前端开发 JavaScript
前端的全栈之路Meteor篇(二):容器化开发环境下的meteor工程架构解析
本文详细介绍了使用Docker创建Meteor项目的准备工作与步骤,解析了容器化Meteor项目的目录结构,包括工程准备、环境配置、容器启动及项目架构分析。提供了最佳实践建议,适合初学者参考学习。项目代码已托管至GitCode,方便读者实践与交流。
|
15天前
|
监控 安全 Java
构建高效后端服务:微服务架构深度解析与最佳实践###
【10月更文挑战第19天】 在数字化转型加速的今天,企业对后端服务的响应速度、可扩展性和灵活性提出了更高要求。本文探讨了微服务架构作为解决方案,通过分析传统单体架构面临的挑战,深入剖析微服务的核心优势、关键组件及设计原则。我们将从实际案例入手,揭示成功实施微服务的策略与常见陷阱,为开发者和企业提供可操作的指导建议。本文目的是帮助读者理解如何利用微服务架构提升后端服务的整体效能,实现业务快速迭代与创新。 ###
44 2

推荐镜像

更多