python是如何利用多线进程优化视频应用到的? 原来是这样的

简介: 前言如果要用Python播放视频,或者打开摄像头获取视频流,我们可以用OpenCV Python。但是在视频帧获取的时候同时做一些图像识别和处理,可能会因为耗时多而导致卡顿。一般来说,我们首先会想到把这些工作放入到线程中处理。

前言
如果要用Python播放视频,或者打开摄像头获取视频流,我们可以用OpenCV Python。但是在视频帧获取的时候同时做一些图像识别和处理,可能会因为耗时多而导致卡顿。一般来说,我们首先会想到把这些工作放入到线程中处理。但是由于Python GIL的存在,用不用线程几乎没有区别。所以要解决这个问题,必须通过多进程。这里分享下使用Dynamsoft Barcode Reader开发Python条形码扫码的例子。

学习从来不是一个人的事情,要有个相互监督的伙伴,工作需要学习python或者有兴趣学习python的伙伴可以私信回复小编“学习”或者评论,留言,点赞 领取全套免费python学习资料、视频()装包

用Python和摄像头打造的桌面条形码扫码应用

安装Dynamsoft Barcode Reader:

pip install dbr

安装OpenCV Python

pip install opencv-python

在主程序中创建一个新的扫码进程和共享内存:

from multiprocessing import Process, Queue
frame_queue = Queue(4)
finish_queue = Queue(1)
dbr_proc = Process(target=dbr_run, args=(
        frame_queue, finish_queue))
dbr_proc.start()

通过OpenCV不断获取视频帧插入到队列中:


vc = cv2.VideoCapture(0)
 
if vc.isOpened():  # try to get the first frame
    rval, frame = vc.read()
else:
    return
 
windowName = "Barcode Reader"
base = 2
count = 0
while True:
    cv2.imshow(windowName, frame)
    rval, frame = vc.read()
 
    count %= base
    if count == 0:
        try:
            frame_queue.put_nowait(frame)
        except:
            try:
                while True:
                    frame_queue.get_nowait()
            except:
                pass
 
    count += 1

条形码读取进程不断从队列中拿出数据进行解码:


def dbr_run(frame_queue, finish_queue):
    dbr.initLicense(config.license)
    while finish_queue.qsize() == 0:
        try:
            inputframe = frame_queue.get_nowait()
            results = dbr.decodeBuffer(inputframe, config.barcodeTypes)
            if (len(results) > 0):
                print(get_time())
                print("Total count: " + str(len(results)))
                for result in results:
                    print("Type: " + result[0])
                    print("Value: " + result[1] + "\n")
        except:
            pass
 
    dbr.destroy()
相关文章
|
16天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
25天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
21天前
|
缓存 大数据 C语言
python优化
python优化
36 5
|
19天前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
33 2
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
48 8
|
25天前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
24天前
|
设计模式 开发者 Python
Python编程中的设计模式应用与实践感悟####
本文作为一篇技术性文章,旨在深入探讨Python编程中设计模式的应用价值与实践心得。在快速迭代的软件开发领域,设计模式如同导航灯塔,指引开发者构建高效、可维护的软件架构。本文将通过具体案例,展现设计模式如何在实际项目中解决复杂问题,提升代码质量,并分享个人在实践过程中的体会与感悟。 ####
|
人工智能 Python
Python工具:将文件夹下的视频按照帧数输出图片文件(含代码)
Python工具:将文件夹下的视频按照帧数输出图片文件(含代码)
155 0
下一篇
DataWorks