python是如何利用多线进程优化视频应用到的? 原来是这样的

简介: 前言如果要用Python播放视频,或者打开摄像头获取视频流,我们可以用OpenCV Python。但是在视频帧获取的时候同时做一些图像识别和处理,可能会因为耗时多而导致卡顿。一般来说,我们首先会想到把这些工作放入到线程中处理。

前言
如果要用Python播放视频,或者打开摄像头获取视频流,我们可以用OpenCV Python。但是在视频帧获取的时候同时做一些图像识别和处理,可能会因为耗时多而导致卡顿。一般来说,我们首先会想到把这些工作放入到线程中处理。但是由于Python GIL的存在,用不用线程几乎没有区别。所以要解决这个问题,必须通过多进程。这里分享下使用Dynamsoft Barcode Reader开发Python条形码扫码的例子。

学习从来不是一个人的事情,要有个相互监督的伙伴,工作需要学习python或者有兴趣学习python的伙伴可以私信回复小编“学习”或者评论,留言,点赞 领取全套免费python学习资料、视频()装包

用Python和摄像头打造的桌面条形码扫码应用

安装Dynamsoft Barcode Reader:

pip install dbr

安装OpenCV Python

pip install opencv-python

在主程序中创建一个新的扫码进程和共享内存:

from multiprocessing import Process, Queue
frame_queue = Queue(4)
finish_queue = Queue(1)
dbr_proc = Process(target=dbr_run, args=(
        frame_queue, finish_queue))
dbr_proc.start()

通过OpenCV不断获取视频帧插入到队列中:


vc = cv2.VideoCapture(0)
 
if vc.isOpened():  # try to get the first frame
    rval, frame = vc.read()
else:
    return
 
windowName = "Barcode Reader"
base = 2
count = 0
while True:
    cv2.imshow(windowName, frame)
    rval, frame = vc.read()
 
    count %= base
    if count == 0:
        try:
            frame_queue.put_nowait(frame)
        except:
            try:
                while True:
                    frame_queue.get_nowait()
            except:
                pass
 
    count += 1

条形码读取进程不断从队列中拿出数据进行解码:


def dbr_run(frame_queue, finish_queue):
    dbr.initLicense(config.license)
    while finish_queue.qsize() == 0:
        try:
            inputframe = frame_queue.get_nowait()
            results = dbr.decodeBuffer(inputframe, config.barcodeTypes)
            if (len(results) > 0):
                print(get_time())
                print("Total count: " + str(len(results)))
                for result in results:
                    print("Type: " + result[0])
                    print("Value: " + result[1] + "\n")
        except:
            pass
 
    dbr.destroy()
相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
73 20
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
前端开发 搜索推荐 编译器
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
111 34
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
22天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
137 9
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
171 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
28天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0

推荐镜像

更多