Java NIO

简介: 微信公众号:菜鸟永恒1.Java NIO 简介2.Java NIO 与IO 的主要区别3.缓冲区(Buffer)和通道(Channel)4.文件通道(FileChannel)5.NIO 的非阻塞式网络通信选择器(Selector)SocketChannel、ServerSocketChannel、DatagramChannel面向流面向缓冲区Java NIO(New IO)是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java IO API。


微信公众号:菜鸟永恒



1.Java NIO 简介


2.Java NIO 与IO 的主要区别


3.缓冲区(Buffer)和通道(Channel)


4.文件通道(FileChannel)


5.NIO 的非阻塞式网络通信


选择器(Selector)
SocketChannel、ServerSocketChannel、DatagramChannel


面向流


面向缓冲区

Java NIO(New IO)是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java IO API。NIO与原来的IO有同样的作用和目的,但是使用的方式完全不同,NIO支持面向缓冲区的、基于通道的IO操作。NIO将以更加高效的方式进行文件的读写操作。


Java NIO 与IO 的主要区别

IO NIO
面向流(Stream Oriented) 面向缓冲区(Buffer Oriented)
阻塞IO(Blocking IO) 非阻塞IO(NonBlocking IO)
非阻塞IO(NonBlocking IO)

import java.nio.ByteBuffer;

import org.junit.Test;

/
 
 一、缓冲区(Buffer):在 Java NIO 中负责数据的存取。缓冲区就是数组。用于存储不同数据类型的数据
  
 
 根据数据类型不同(boolean 除外),提供了相应类型的缓冲区:
  ByteBuffer
 
 CharBuffer
  ShortBuffer
 
 IntBuffer
  LongBuffer
 
 FloatBuffer
  DoubleBuffer
 
 
  上述缓冲区的管理方式几乎一致,通过 allocate() 获取缓冲区
 
 
  二、缓冲区存取数据的两个核心方法:
 
 put() : 存入数据到缓冲区中
  get() : 获取缓冲区中的数据
 
 
  三、缓冲区中的四个核心属性:
 
 capacity : 容量,表示缓冲区中最大存储数据的容量。一旦声明不能改变。
  limit : 界限,表示缓冲区中可以操作数据的大小。(limit 后数据不能进行读写)
 
 position : 位置,表示缓冲区中正在操作数据的位置。
  
 
 mark : 标记,表示记录当前 position 的位置。可以通过 reset() 恢复到 mark 的位置
  
 
 0 <= mark <= position <= limit <= capacity
  
 
 四、直接缓冲区与非直接缓冲区:
  非直接缓冲区:通过 allocate() 方法分配缓冲区,将缓冲区建立在 JVM 的内存中
 
 直接缓冲区:通过 allocateDirect() 方法分配直接缓冲区,将缓冲区建立在物理内存中。可以提高效率
 */

public class TestBuffer {

    @Test
    public void test3()
{
        //分配直接缓冲区
        ByteBuffer buf = ByteBuffer.allocateDirect(1024);

        System.out.println(buf.isDirect());
    }

    @Test
    public void test2()
{
        String str = "abcde";

        ByteBuffer buf = ByteBuffer.allocate(1024);

        buf.put(str.getBytes());

        buf.flip();

        byte[] dst = new byte[buf.limit()];
        buf.get(dst, 02);
        System.out.println(new String(dst, 02));
        System.out.println(buf.position());

        //mark() : 标记
        buf.mark();

        buf.get(dst, 22);
        System.out.println(new String(dst, 22));
        System.out.println(buf.position());

        //reset() : 恢复到 mark 的位置
        buf.reset();
        System.out.println(buf.position());

        //判断缓冲区中是否还有剩余数据
        if(buf.hasRemaining()){

            //获取缓冲区中可以操作的数量
            System.out.println(buf.remaining());
        }
    }

    @Test
    public void test1()
{
        String str = "abcde";

        //1. 分配一个指定大小的缓冲区
        ByteBuffer buf = ByteBuffer.allocate(1024);

        System.out.println("-----------------allocate()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        //2. 利用 put() 存入数据到缓冲区中
        buf.put(str.getBytes());

        System.out.println("-----------------put()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        //3. 切换读取数据模式
        buf.flip();

        System.out.println("-----------------flip()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        //4. 利用 get() 读取缓冲区中的数据
        byte[] dst = new byte[buf.limit()];
        buf.get(dst);
        System.out.println(new String(dst, 0, dst.length));

        System.out.println("-----------------get()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        //5. rewind() : 可重复读
        buf.rewind();

        System.out.println("-----------------rewind()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        //6. clear() : 清空缓冲区. 但是缓冲区中的数据依然存在,但是处于“被遗忘”状态
        buf.clear();

        System.out.println("-----------------clear()----------------");
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.capacity());

        System.out.println((char)buf.get());

    }

}

1-通道(Channel)与缓冲区(Buffer)


通道和缓冲区
Java NIO系统的核心在于:通道(Channel)和缓冲区(Buffer)。通道表示打开到IO 设备(例如:文件、套接字)的连接。若需要使用NIO 系统,需要获取用于连接IO 设备的通道以及用于容纳数据的缓冲区。然后操作缓冲区,对数据进行处理。


缓冲区(Buffer)


 缓冲区(Buffer):一个用于特定基本数据类
型的容器。由java.nio 包定义的,所有缓冲区
都是Buffer 抽象类的子类。


 Java NIO 中的Buffer 主要用于与NIO 通道进行
交互,数据是从通道读入缓冲区,从缓冲区写
入通道中的。


缓冲区(Buffer)
Buffer 就像一个数组,可以保存多个相同类型的数据。根
据数据类型不同(boolean 除外) ,有以下Buffer 常用子类:
 ByteBuffer
 CharBuffer
 ShortBuffer
 IntBuffer
 LongBuffer
 FloatBuffer
 DoubleBuffer
上述Buffer 类他们都采用相似的方法进行管理数据,只是各自
管理的数据类型不同而已。都是通过如下方法获取一个Buffer
对象:


缓冲区的基本属性


Buffer 中的重要概念:
 容量(capacity) :表示Buffer 最大数据容量,缓冲区容量不能为负,并且创
建后不能更改。


 限制(limit):第一个不应该读取或写入的数据的索引,即位于limit 后的数据
不可读写。缓冲区的限制不能为负,并且不能大于其容量。


 位置(position):下一个要读取或写入的数据的索引。缓冲区的位置不能为
负,并且不能大于其限制


 标记(mark)与重置(reset):标记是一个索引,通过Buffer 中的mark() 方法
指定Buffer 中一个特定的position,之后可以通过调用reset() 方法恢复到这
个position.


缓冲区的基本属性



Buffer 的常用方法

方法 描述
Buffer clear() 清空缓冲区并返回对缓冲区的引用
Buffer flip() 将缓冲区的界限设置为当前位置,并将当前位置充值为0
int capacity() 返回Buffer 的capacity 大小
boolean hasRemaining() 判断缓冲区中是否还有元素
int limit() 返回Buffer 的界限(limit) 的位置
Buffer limit(int n) 将设置缓冲区界限为n, 并返回一个具有新limit 的缓冲区对象
Buffer mark() 对缓冲区设置标记
int position() 返回缓冲区的当前位置position
Buffer position(int n) 将设置缓冲区的当前位置为n , 并返回修改后的Buffer 对象
int remaining() 返回position 和limit 之间的元素个数
Buffer reset() 将位置position 转到以前设置的mark 所在的位置
Buffer rewind() 将位置设为为0, 取消设置的mark

缓冲区的数据操作


Buffer 所有子类提供了两个用于数据操作的方法:get()
与put() 方法


获取Buffer 中的数据


get() :读取单个字节
get(byte[] dst):批量读取多个字节到dst 中
get(int index):读取指定索引位置的字节(不会移动position)


放入数据到Buffer 中


put(byte b):将给定单个字节写入缓冲区的当前位置
put(byte[] src):将src 中的字节写入缓冲区的当前位置
put(int index, byte b):将指定字节写入缓冲区的索引位置(不会移动position)


                         直接与非直接缓冲区

字节缓冲区要么是直接的,要么是非直接的。如果为直接字节缓冲区,则Java 虚拟机会尽最大努力直接在
此缓冲区上执行本机I/O 操作。也就是说,在每次调用基础操作系统的一个本机I/O 操作之前(或之后),
虚拟机都会尽量避免将缓冲区的内容复制到中间缓冲区中(或从中间缓冲区中复制内容)。


直接字节缓冲区可以通过调用此类的allocateDirect() 工厂方法来创建。此方法返回的缓冲区进行分配和取消
分配所需成本通常高于非直接缓冲区。直接缓冲区的内容可以驻留在常规的垃圾回收堆之外,因此,它们对
应用程序的内存需求量造成的影响可能并不明显。所以,建议将直接缓冲区主要分配给那些易受基础系统的
本机I/O 操作影响的大型、持久的缓冲区。一般情况下,最好仅在直接缓冲区能在程序性能方面带来明显好
处时分配它们。


直接字节缓冲区还可以通过FileChannel 的map() 方法将文件区域直接映射到内存中来创建。该方法返回
MappedByteBuffer 。Java 平台的实现有助于通过JNI 从本机代码创建直接字节缓冲区。如果以上这些缓冲区
中的某个缓冲区实例指的是不可访问的内存区域,则试图访问该区域不会更改该缓冲区的内容,并且将会在
访问期间或稍后的某个时间导致抛出不确定的异常。


字节缓冲区是直接缓冲区还是非直接缓冲区可通过调用其isDirect() 方法来确定。提供此方法是为了能够在
性能关键型代码中执行显式缓冲区管理。


非直接缓冲区


直接缓冲区


通道(Channel)


通道(Channel):由java.nio.channels 包定义
的。Channel 表示IO 源与目标打开的连接。
Channel 类似于传统的“流”。只不过Channel
本身不能直接访问数据,Channel 只能与
Buffer 进行交互。


通道(Channel)




通道(Channel)


Java 为Channel 接口提供的最主要实现类如下:


•FileChannel:用于读取、写入、映射和操作文件的通道。
•DatagramChannel:通过UDP 读写网络中的数据通道。
•SocketChannel:通过TCP 读写网络中的数据。
•ServerSocketChannel:可以监听新进来的TCP 连接,对每一个新进来
的连接都会创建一个SocketChannel。


获取通道


获取通道的一种方式是对支持通道的对象调用
getChannel() 方法。支持通道的类如下:
 FileInputStream
 FileOutputStream
 RandomAccessFile
 DatagramSocket
 Socket
 ServerSocket
获取通道的其他方式是使用Files 类的静态方法newByteChannel() 获
取字节通道。或者通过通道的静态方法open() 打开并返回指定通道。


import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.FileChannel.MapMode;
import java.nio.charset.CharacterCodingException;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;

import org.junit.Test;

/
 
 一、通道(Channel):用于源节点与目标节点的连接。在 Java NIO 中负责缓冲区中数据的传输。Channel 本身不存储数据,因此需要配合缓冲区进行传输。
  
 
 二、通道的主要实现类
      java.nio.channels.Channel 接口:
 
         |--FileChannel
          |--SocketChannel
 
         |--ServerSocketChannel
          |--DatagramChannel
 
 
  三、获取通道
 
 1. Java 针对支持通道的类提供了 getChannel() 方法
          本地 IO:
 
         FileInputStream/FileOutputStream
          RandomAccessFile
 
 
          网络IO:
 
         Socket
          ServerSocket
 
         DatagramSocket
          
 
 2. 在 JDK 1.7 中的 NIO.2 针对各个通道提供了静态方法 open()
  3. 在 JDK 1.7 中的 NIO.2 的 Files 工具类的 newByteChannel()
 
 
  四、通道之间的数据传输
 
 transferFrom()
  transferTo()
 
 
  五、分散(Scatter)与聚集(Gather)
 
 分散读取(Scattering Reads):将通道中的数据分散到多个缓冲区中
  聚集写入(Gathering Writes):将多个缓冲区中的数据聚集到通道中
 
 
  六、字符集:Charset
 
 编码:字符串 -> 字节数组
  解码:字节数组  -> 字符串
 
 
 */

public class TestChannel {

    //字符集
    @Test
    public void test6() throws IOException{
        Charset cs1 = Charset.forName("GBK");

        //获取编码器
        CharsetEncoder ce = cs1.newEncoder();

        //获取解码器
        CharsetDecoder cd = cs1.newDecoder();

        CharBuffer cBuf = CharBuffer.allocate(1024);
        cBuf.put("威武!");
        cBuf.flip();

        //编码
        ByteBuffer bBuf = ce.encode(cBuf);

        for (int i = 0; i < 12; i++) {
            System.out.println(bBuf.get());
        }

        //解码
        bBuf.flip();
        CharBuffer cBuf2 = cd.decode(bBuf);
        System.out.println(cBuf2.toString());

        System.out.println("------------------------------------------------------");

        Charset cs2 = Charset.forName("GBK");
        bBuf.flip();
        CharBuffer cBuf3 = cs2.decode(bBuf);
        System.out.println(cBuf3.toString());
    }

    @Test
    public void test5(){
        Map<String, Charset> map = Charset.availableCharsets();

        Set<Entry<String, Charset>> set = map.entrySet();

        for (Entry<String, Charset> entry : set) {
            System.out.println(entry.getKey() + "=" + entry.getValue());
        }
    }

    //分散和聚集
    @Test
    public void test4() throws IOException{
        RandomAccessFile raf1 = new RandomAccessFile("1.txt""rw");

        //1. 获取通道
        FileChannel channel1 = raf1.getChannel();

        //2. 分配指定大小的缓冲区
        ByteBuffer buf1 = ByteBuffer.allocate(100);
        ByteBuffer buf2 = ByteBuffer.allocate(1024);

        //3. 分散读取
        ByteBuffer[] bufs = {buf1, buf2};
        channel1.read(bufs);

        for (ByteBuffer byteBuffer : bufs) {
            byteBuffer.flip();
        }

        System.out.println(new String(bufs[0].array(), 0, bufs[0].limit()));
        System.out.println("-----------------");
        System.out.println(new String(bufs[1].array(), 0, bufs[1].limit()));

        //4. 聚集写入
        RandomAccessFile raf2 = new RandomAccessFile("2.txt""rw");
        FileChannel channel2 = raf2.getChannel();

        channel2.write(bufs);
    }

    //通道之间的数据传输(直接缓冲区)
    @Test
    public void test3() throws IOException{
        FileChannel inChannel = FileChannel.open(Paths.get("d:/1.mkv"), StandardOpenOption.READ);
        FileChannel outChannel = FileChannel.open(Paths.get("d:/2.mkv"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE);

//        inChannel.transferTo(0, inChannel.size(), outChannel);
        outChannel.transferFrom(inChannel, 0, inChannel.size());

        inChannel.close();
        outChannel.close();
    }

    //使用直接缓冲区完成文件的复制(内存映射文件)
    @Test
    public void test2() throws IOException{//2127-1902-1777
        long start = System.currentTimeMillis();

        FileChannel inChannel = FileChannel.open(Paths.get("d:/1.mkv"), StandardOpenOption.READ);
        FileChannel outChannel = FileChannel.open(Paths.get("d:/2.mkv"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE);

        //内存映射文件
        MappedByteBuffer inMappedBuf = inChannel.map(MapMode.READ_ONLY, 0, inChannel.size());
        MappedByteBuffer outMappedBuf = outChannel.map(MapMode.READ_WRITE, 0, inChannel.size());

        //直接对缓冲区进行数据的读写操作
        byte[] dst = new byte[inMappedBuf.limit()];
        inMappedBuf.get(dst);
        outMappedBuf.put(dst);

        inChannel.close();
        outChannel.close();

        long end = System.currentTimeMillis();
        System.out.println("耗费时间为:" + (end - start));
    }

    //利用通道完成文件的复制(非直接缓冲区)
    @Test
    public void test1(){//10874-10953
        long start = System.currentTimeMillis();

        FileInputStream fis = null;
        FileOutputStream fos = null;
        //①获取通道
        FileChannel inChannel = null;
        FileChannel outChannel = null;
        try {
            fis = new FileInputStream("d:/1.mkv");
            fos = new FileOutputStream("d:/2.mkv");

            inChannel = fis.getChannel();
            outChannel = fos.getChannel();

            //②分配指定大小的缓冲区
            ByteBuffer buf = ByteBuffer.allocate(1024);

            //③将通道中的数据存入缓冲区中
            while(inChannel.read(buf) != -1){
                buf.flip(); //切换读取数据的模式
                //④将缓冲区中的数据写入通道中
                outChannel.write(buf);
                buf.clear(); //清空缓冲区
            }
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if(outChannel != null){
                try {
                    outChannel.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }

            if(inChannel != null){
                try {
                    inChannel.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }

            if(fos != null){
                try {
                    fos.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }

            if(fis != null){
                try {
                    fis.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }

        long end = System.currentTimeMillis();
        System.out.println("耗费时间为:" + (end - start));

    }

}
目录
相关文章
|
16天前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
27 3
|
23天前
|
存储 监控 Java
Java的NIO体系
通过本文的介绍,希望您能够深入理解Java NIO体系的核心组件、工作原理及其在高性能应用中的实际应用,并能够在实际开发中灵活运用这些知识,构建高效的Java应用程序。
31 5
|
6月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
2月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
4月前
|
存储 网络协议 Java
Java NIO 开发
本文介绍了Java NIO(New IO)及其主要组件,包括Channel、Buffer和Selector,并对比了NIO与传统IO的优势。文章详细讲解了FileChannel、SocketChannel、ServerSocketChannel、DatagramChannel及Pipe.SinkChannel和Pipe.SourceChannel等Channel实现类,并提供了示例代码。通过这些示例,读者可以了解如何使用不同类型的通道进行数据读写操作。
Java NIO 开发
|
3月前
|
Java
让星星⭐月亮告诉你,Java NIO之Buffer详解 属性capacity/position/limit/mark 方法put(X)/get()/flip()/compact()/clear()
这段代码演示了Java NIO中`ByteBuffer`的基本操作,包括分配、写入、翻转、读取、压缩和清空缓冲区。通过示例展示了`position`、`limit`和`mark`属性的变化过程,帮助理解缓冲区的工作原理。
41 2
|
5月前
|
Java
"揭秘Java IO三大模式:BIO、NIO、AIO背后的秘密!为何AIO成为高并发时代的宠儿,你的选择对了吗?"
【8月更文挑战第19天】在Java的IO编程中,BIO、NIO与AIO代表了三种不同的IO处理机制。BIO采用同步阻塞模型,每个连接需单独线程处理,适用于连接少且稳定的场景。NIO引入了非阻塞性质,利用Channel、Buffer与Selector实现多路复用,提升了效率与吞吐量。AIO则是真正的异步IO,在JDK 7中引入,通过回调或Future机制在IO操作完成后通知应用,适合高并发场景。选择合适的模型对构建高效网络应用至关重要。
106 2
|
5月前
|
网络协议 C# 开发者
WPF与Socket编程的完美邂逅:打造流畅网络通信体验——从客户端到服务器端,手把手教你实现基于Socket的实时数据交换
【8月更文挑战第31天】网络通信在现代应用中至关重要,Socket编程作为其实现基础,即便在主要用于桌面应用的Windows Presentation Foundation(WPF)中也发挥着重要作用。本文通过最佳实践,详细介绍如何在WPF应用中利用Socket实现网络通信,包括创建WPF项目、设计用户界面、实现Socket通信逻辑及搭建简单服务器端的全过程。具体步骤涵盖从UI设计到前后端交互的各个环节,并附有详尽示例代码,助力WPF开发者掌握这一关键技术,拓展应用程序的功能与实用性。
167 0
|
6月前
|
安全 Java Linux
(七)Java网络编程-IO模型篇之从BIO、NIO、AIO到内核select、epoll剖析!
IO(Input/Output)方面的基本知识,相信大家都不陌生,毕竟这也是在学习编程基础时就已经接触过的内容,但最初的IO教学大多数是停留在最基本的BIO,而并未对于NIO、AIO、多路复用等的高级内容进行详细讲述,但这些却是大部分高性能技术的底层核心,因此本文则准备围绕着IO知识进行展开。
201 1
|
5月前
|
存储 网络协议 Java
【Netty 神奇之旅】Java NIO 基础全解析:从零开始玩转高效网络编程!
【8月更文挑战第24天】本文介绍了Java NIO,一种非阻塞I/O模型,极大提升了Java应用程序在网络通信中的性能。核心组件包括Buffer、Channel、Selector和SocketChannel。通过示例代码展示了如何使用Java NIO进行服务器与客户端通信。此外,还介绍了基于Java NIO的高性能网络框架Netty,以及如何用Netty构建TCP服务器和客户端。熟悉这些技术和概念对于开发高并发网络应用至关重要。
96 0