【Getty】Java NIO框架设计与实现

简介: 前言Getty是我为了学习 Java NIO 所写的一个 NIO 框架,实现过程中参考了 Netty 的设计,同时使用 Groovy 来实现。虽然只是玩具,但是麻雀虽小,五脏俱全,在实现过程中,不仅熟悉了 NIO 的使用,还借鉴了很多 Netty 的设计思想,提升了自己的编码和设计能力。

前言

Getty是我为了学习 Java NIO 所写的一个 NIO 框架,实现过程中参考了 Netty 的设计,同时使用 Groovy 来实现。虽然只是玩具,但是麻雀虽小,五脏俱全,在实现过程中,不仅熟悉了 NIO 的使用,还借鉴了很多 Netty 的设计思想,提升了自己的编码和设计能力。

至于为什么用 Groovy 来写,因为我刚学了 Groovy,正好拿来练手,加上 Groovy 是兼容 Java 的,所以只是语法上的差别,底层实现还是基于 Java API的。

Getty 的核心代码行数不超过 500 行,一方面得益于 Groovy 简洁的语法,另一方面是因为我只实现了核心的逻辑,最复杂的其实是解码器实现。脚手架容易搭,摩天大楼哪有那么容易盖,但用来学习 NIO 足以。

线程模型

Getty 使用的是 Reactor 多线程模型

  1. 有专门一个 NIO 线程- Acceptor 线程用于监听服务端,接收客户端的 TCP 连接请求,然后将连接分配给工作线程,由工作线程来监听读写事件。
  2. 网络 IO 操作-读/写等由多个工作线程负责,由这些工作线程负责消息的读取、解码、编码和发送。
  3. 1 个工作线程可以同时处理N条链路,但是 1 个链路只对应 1 个工作线程,防止发生并发操作问题。

事件驱动模型

整个服务端的流程处理,建立于事件机制上。在 [接受连接->读->业务处理->写 ->关闭连接 ]这个过程中,触发器将触发相应事件,由事件处理器对相应事件分别响应,完成服务器端的业务处理。

事件定义

  1. onRead:当客户端发来数据,并已被工作线程正确读取时,触发该事件 。该事件通知各事件处理器可以对客户端发来的数据进行实际处理了。
  2. onWrite:当客户端可以开始接受服务端发送数据时触发该事件,通过该事件,我们可以向客户端发送响应数据。(当前的实现中并未使用写事件)
  3. onClosed:当客户端与服务器断开连接时触发该事件。

事件回调机制的实现

在这个模型中,事件采用广播方式,也就是所有注册的事件处理器都能获得事件通知。这样可以将不同性质的业务处理,分别用不同的处理器实现,使每个处理器的功能尽可能单一。

如下图:整个事件模型由监听器、事件适配器、事件触发器(HandlerChain,PipeLine)、事件处理器组成。

  • ServerListener:这是一个事件接口,定义需监听的服务器事件

    interface ServerListener extends Serializable{

    /**
     * 可读事件回调
     * @param request
     */
    void onRead(ctx)
    /**
     * 可写事件回调
     * @param request
     * @param response
     */
    void onWrite(ctx)
    /**
     * 连接关闭回调
     * @param request
     */
    void onClosed(ctx)

    }

  • EventAdapter:对 Serverlistener 接口实现一个适配器 (EventAdapter),这样的好处是最终的事件处理器可以只处理所关心的事件。

    class EventAdapter implements ServerListener {

    //下个处理器的引用
    protected next
    void onRead(Object ctx) {
    }
    void onWrite(Object ctx) {
    }
    void onClosed(Object ctx) {
    }

    }

  • Notifier:用于在适当的时候通过触发服务器事件,通知在册的事件处理器对事件做出响应。

    interface Notifier extends Serializable{

    /**
     * 触发所有可读事件回调
     */
    void fireOnRead(ctx)
    /**
     * 触发所有可写事件回调
     */
    void fireOnWrite(ctx)
    /**
     * 触发所有连接关闭事件回调
     */
    void fireOnClosed(ctx)

    }

  • HandlerChain:实现了Notifier接口,维持有序的事件处理器链条,每次从第一个处理器开始触发。

    class HandlerChain implements Notifier{

    EventAdapter head
    EventAdapter tail
    /**
     * 添加处理器到执行链的最后
     * @param handler
     */
    void addLast(handler) {
        if (tail != null) {
            tail.next = handler
            tail = tail.next
        } else {
            head = handler
            tail = head
        }
    }
    void fireOnRead(ctx) {
        head.onRead(ctx)
    }
    void fireOnWrite(ctx) {
        head.onWrite(ctx)
    }
    void fireOnClosed(ctx) {
        head.onClosed(ctx)
    }

    }

  • PipeLine:实现了Notifier接口,作为事件总线,维持一个事件链的列表。

    class PipeLine implements Notifier{

    static logger = LoggerFactory.getLogger(PipeLine.name)
    //监听器队列
    def listOfChain = []
    PipeLine(){}
    /**
     * 添加监听器到监听队列中
     * @param chain
     */
    void addChain(chain) {
        synchronized (listOfChain) {
            if (!listOfChain.contains(chain)) {
                listOfChain.add(chain)
            }
        }
    }
    /**
     * 触发所有可读事件回调
     */
    void fireOnRead(ctx) {
        logger.debug("fireOnRead")
        listOfChain.each { chain ->
            chain.fireOnRead(ctx)
        }
    }
    /**
     * 触发所有可写事件回调
     */
    void fireOnWrite(ctx) {
        listOfChain.each { chain ->
            chain.fireOnWrite(ctx)
        }
    }
    /**
     * 触发所有连接关闭事件回调
     */
    void fireOnClosed(ctx) {
        listOfChain.each { chain ->
            chain.fireOnClosed(ctx)
        }
    }

    }

事件处理流程

事件处理采用职责链模式,每个处理器处理完数据之后会决定是否继续执行下一个处理器。如果处理器不将任务交给线程池处理,那么整个处理流程都在同一个线程中处理。而且每个连接都有单独的PipeLine,工作线程可以在多个连接上下文切换,但是一个连接上下文只会被一个线程处理。

核心类

ConnectionCtx

连接上下文ConnectionCtx

class ConnectionCtx {
    /**socket连接*/
    SocketChannel channel
    /**用于携带额外参数*/
    Object attachment
    /**处理当前连接的工作线程*/
    Worker worker
    /**连接超时时间*/
    Long timeout
    /**每个连接拥有自己的pipeline*/
    PipeLine pipeLine
}

NioServer

主线程负责监听端口,持有工作线程的引用(使用轮转法分配连接),每次有连接到来时,将连接放入工作线程的连接队列,并唤醒线程selector.wakeup()(线程可能阻塞在selector上)。

class NioServer extends Thread {
    /**服务端的套接字通道*/
    ServerSocketChannel ssc
    /**选择器*/
    Selector selector
    /**事件总线*/
    PipeLine pipeLine
    /**工作线程列表*/
    def workers = []
    /**当前工作线程索引*/
    int index
}

Worker

工作线程,负责注册server传递过来的socket连接。主要监听读事件,管理socket,处理写操作。

class Worker extends Thread {
    /**选择器*/
    Selector selector
    /**读缓冲区*/
    ByteBuffer buffer
    /**主线程分配的连接队列*/
    def queue = []
    /**存储按超时时间从小到大的连接*/
    TreeMap<Long, ConnectionCtx> ctxTreeMap

    void run() {
        while (true) {
            selector.select()
            //注册主线程发送过来的连接
            registerCtx()
            //关闭超时的连接
            closeTimeoutCtx()
            //处理事件
            dispatchEvent()
        }
    }
}

运行一个简单的 Web 服务器

我实现了一系列处理HTTP请求的处理器,具体实现看代码。

  • LineBasedDecoder:行解码器,按行解析数据
  • HttpRequestDecoder:HTTP请求解析,目前只支持GET请求
  • HttpRequestHandler:Http 请求处理器,目前只支持GET方法
  • HttpResponseHandler:Http响应处理器

下面是写在test中的例子

class WebServerTest {
    static void main(args) {
        def pipeLine = new PipeLine()

        def readChain = new HandlerChain()
        readChain.addLast(new LineBasedDecoder())
        readChain.addLast(new HttpRequestDecoder())
        readChain.addLast(new HttpRequestHandler())
        readChain.addLast(new HttpResponseHandler())

        def closeChain = new HandlerChain()
        closeChain.addLast(new ClosedHandler())

        pipeLine.addChain(readChain)
        pipeLine.addChain(closeChain)

        NioServer nioServer = new NioServer(pipeLine)
        nioServer.start()
    }
}

另外,还可以使用配置文件getty.properties设置程序的运行参数。

#用于拼接消息时使用的二进制数组的缓存区
common_buffer_size=1024
#工作线程读取tcp数据的缓存大小
worker_rcv_buffer_size=1024
#监听的端口
port=4399
#工作线程的数量
worker_num=1
#连接超时自动断开时间
timeout=900
#根目录
root=.

总结

Getty是我造的第二个小轮子,第一个是RedisHttpSession。都说不要重复造轮子。这话我是认同的,但是掌握一门技术最好的方法就是实践,在没有合适项目可以使用新技术的时候,造一个简单的轮子是不错的实践手段。

Getty 的缺点或者说还可以优化的点:

  1. 线程的使用直接用了Thread类,看起来有点low。等以后水平提升了再来抽象一下。
  2. 目前只有读事件是异步的,写事件是同步的。未来将写事件也改为异步的。
目录
相关文章
|
3月前
|
自然语言处理 前端开发 Java
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
358 5
|
10月前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
10月前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
5月前
|
前端开发 Java 物联网
智慧班牌源码,采用Java + Spring Boot后端框架,搭配Vue2前端技术,支持SaaS云部署
智慧班牌系统是一款基于信息化与物联网技术的校园管理工具,集成电子屏显示、人脸识别及数据交互功能,实现班级信息展示、智能考勤与家校互通。系统采用Java + Spring Boot后端框架,搭配Vue2前端技术,支持SaaS云部署与私有化定制。核心功能涵盖信息发布、考勤管理、教务处理及数据分析,助力校园文化建设与教学优化。其综合性和可扩展性有效打破数据孤岛,提升交互体验并降低管理成本,适用于日常教学、考试管理和应急场景,为智慧校园建设提供全面解决方案。
374 70
|
9月前
|
存储 安全 Java
Java 集合框架中的老炮与新秀:HashTable 和 HashMap 谁更胜一筹?
嗨,大家好,我是技术伙伴小米。今天通过讲故事的方式,详细介绍 Java 中 HashMap 和 HashTable 的区别。从版本、线程安全、null 值支持、性能及迭代器行为等方面对比,帮助你轻松应对面试中的经典问题。HashMap 更高效灵活,适合单线程或需手动处理线程安全的场景;HashTable 较古老,线程安全但性能不佳。现代项目推荐使用 ConcurrentHashMap。关注我的公众号“软件求生”,获取更多技术干货!
142 3
|
3月前
|
存储 安全 Java
现代应用场景中 Java 集合框架的核心技术与实践要点
本内容聚焦Java 17及最新技术趋势,通过实例解析Java集合框架的高级用法与性能优化。涵盖Record类简化数据模型、集合工厂方法创建不可变集合、HashMap初始容量调优、ConcurrentHashMap高效并发处理、Stream API复杂数据操作与并行流、TreeMap自定义排序等核心知识点。同时引入JMH微基准测试与VisualVM工具分析性能,总结现代集合框架最佳实践,如泛型使用、合适集合类型选择及线程安全策略。结合实际案例,助你深入掌握Java集合框架的高效应用与优化技巧。
120 4
|
10月前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
491 3
|
6月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
349 3
|
7月前
|
存储 缓存 Java
java语言后台管理ruoyi后台管理框架-登录提示“无效的会话,或者会话已过期,请重新登录。”-扩展知识数据库中密码加密的方法-问题如何解决-以及如何重置若依后台管理框架admin密码-优雅草卓伊凡
java语言后台管理ruoyi后台管理框架-登录提示“无效的会话,或者会话已过期,请重新登录。”-扩展知识数据库中密码加密的方法-问题如何解决-以及如何重置若依后台管理框架admin密码-优雅草卓伊凡
731 3
java语言后台管理ruoyi后台管理框架-登录提示“无效的会话,或者会话已过期,请重新登录。”-扩展知识数据库中密码加密的方法-问题如何解决-以及如何重置若依后台管理框架admin密码-优雅草卓伊凡
|
5月前
|
存储 安全 Java
Java 集合框架详解:系统化分析与高级应用
本文深入解析Java集合框架,涵盖List、Set、Map等核心接口及其常见实现类,如ArrayList、HashSet、HashMap等。通过对比不同集合类型的特性与应用场景,帮助开发者选择最优方案。同时介绍Iterator迭代机制、Collections工具类及Stream API等高级功能,提升代码效率与可维护性。适合初学者与进阶开发者系统学习与实践。
168 0