[雪峰磁针石博客]大数据Hadoop工具python教程2-python访问HDFS

简介: https://pypi.org/project/hdfs3 已经不维护PyArrow https://pypi.org/project/hdfs/https://pypi.org/project/snakebite/ python2中比较好,对python3支持不好。

https://pypi.org/project/hdfs3 已经不维护
PyArrow
https://pypi.org/project/hdfs/
https://pypi.org/project/snakebite/ python2中比较好,对python3支持不好。

hdfs和PyArrow比较常用,这里以hdfs为例:

 快速入门

from hdfs import InsecureClient
client = InsecureClient('http://localhost:50070', user='hduser_')

fs_folders_list = client.list("/")
print(fs_folders_list)
with client.read('/user/hduser/input.txt', encoding='utf-8') as reader:
    for line in reader:
        print(line)

执行结果:

['user']
https://china-testing.github.io/

https://diogoalexandrefranco.github.io/interacting-with-hdfs-from-pyspark/
http://wesmckinney.com/blog/python-hdfs-interfaces/
https://www.thomashenson.com/hadoop-python-example/
https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/

https://community.hortonworks.com/articles/92321/interacting-with-hadoop-hdfs-using-python-codes.html
http://yizhanggou.top/python%E8%AE%BF%E9%97%AEhdfs%E7%9A%84%E5%87%A0%E7%A7%8D%E6%96%B9%E5%BC%8F/
https://blog.csdn.net/Gamer_gyt/article/details/52446757

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
20小时前
|
存储 分布式计算 Hadoop
hadoop节点HDFS数据分片过程
【5月更文挑战第18天】
9 1
|
20小时前
|
存储 分布式计算 Hadoop
|
20小时前
|
存储 分布式计算 Hadoop
hadoop节点HDFS数据块(Block)
【5月更文挑战第18天】
7 1
|
2天前
|
存储 分布式计算 资源调度
|
2天前
|
缓存 监控 数据安全/隐私保护
探索Python中的装饰器:一种强大的元编程工具
在Python编程中,装饰器是一个强大而优雅的元编程工具,它允许我们在不修改原有函数或类代码的情况下,为其添加新的功能或修改其行为。本文将带您深入了解Python装饰器的概念、工作原理及其在实际编程中的应用,通过示例演示如何创建和使用装饰器,并探讨其在代码复用、性能监控和日志记录等方面的强大作用。
|
11天前
|
程序员 开发者 Python
Python中的装饰器:优雅而强大的函数修饰工具
在Python编程中,装饰器是一种强大的工具,它可以简洁地实现函数的增强、扩展和重用。本文将深入探讨Python中装饰器的工作原理、常见应用场景以及如何自定义装饰器,帮助读者更好地理解和运用这一重要的编程概念。
|
11天前
|
SQL 物联网 关系型数据库
sqlmap工具的使用 (超详细附工具版)_python sqlmap
sqlmap工具的使用 (超详细附工具版)_python sqlmap
|
14天前
|
分布式计算 DataWorks 数据库
DataWorks操作报错合集之DataWorks使用数据集成整库全增量同步oceanbase数据到odps的时候,遇到报错,该怎么处理
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
27 0
|
14天前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之在 DataWorks 中,使用Oracle作为数据源进行数据映射和查询,如何更改数据源为MaxCompute或其他类型
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
33 1
|
14天前
|
分布式计算 DataWorks 调度
DataWorks产品使用合集之在DataWorks中,查看ODPS表的OSS对象如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
31 1