直播:Phoenix 全局索引原理与实践

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云数据库 Tair(兼容Redis),内存型 2GB
简介: 全局索引是Phoneix的核心特性之一,此话题主要内容包括phoenix mutable表全局索引机制原理, 场景应用以及最佳实践。

_2019_01_22_6_35_47

讲师:瑾谦——阿里数据库产品专家

主题:Phoenix 全局索引原理与实践

内容概要:全局索引是Phoneix的核心特性之一,此话题主要内容包括phoenix mutable表全局索引机制原理, 场景应用以及最佳实践。

视频回看:https://yq.aliyun.com/live/843

PPT下载:https://yq.aliyun.com/download/3300


专家每周二18点在钉钉群直播,欢迎大家进群交流
HBase

相关文章
|
8月前
|
SQL 数据库 开发工具
实时计算 Flink版产品使用合集之数据库中有新增索引,同步任务没有报错,索引的变动是否有影响
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 索引 OceanBase
OBCP第四章 SQL调优-局部索引与全局索引
OBCP第四章 SQL调优-局部索引与全局索引
172 0
|
3月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
191 0
|
5月前
|
存储 运维 搜索推荐
运维开发.索引引擎ElasticSearch.倒序索引的概念
运维开发.索引引擎ElasticSearch.倒序索引的概念
59 1
|
7月前
|
存储 SQL 分布式计算
技术心得记录:深入学习HBase架构原理
技术心得记录:深入学习HBase架构原理
|
8月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之源MySQL表新增字段后,要同步这个改变到Elasticsearch的步骤是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
存储 SQL 关系型数据库
【MySQL从入门到精通】【高级篇】(二十九)覆盖索引的使用&索引下推
上一篇文章我们介绍了 【MySQL从入门到精通】【高级篇】(二十八)子查询优化,排序优化,GROUP BY优化和分页查询优化。这篇文章我们接着来介绍覆盖索引。
226 0
|
JSON 安全 搜索推荐
白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧(一)
白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧(一)
266 0
|
JSON 安全 Java
白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧。(一)
白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧。(一)
272 0
|
存储 SQL 分布式计算
Apache Hudi重磅特性解读之全局索引
Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中。 当前,Hudi支持分区和非分区的数据集。分区数据集是将一组文件(数据)放在称为分区的桶中的数据集。一个Hudi数据集可能由N个分区和M个文件组成,这种组织结构也非常方便hive/presto/spark等引擎根据分区字段过滤以返回有限的数据量。而分区的值绝大多数情况下是从数据中得来,这个要求一旦一条记录映射到分区/桶,那么这个映射应该 a) 被Hudi知道;b) 在Hudi数据集生命周期里保持不变。
804 0
Apache Hudi重磅特性解读之全局索引