基于AWS云服务的大数据与大规模计算的应用架构

简介: AWS对于大规模计算方案是很受欢迎的,如科学计算,模拟和研究项目。这些方案包括从科研设备,测量设备,或其他计算作业的大量数据集的采集。

AWS对于大规模计算方案是很受欢迎的,如科学计算,模拟和研究项目。这些方案包括从科研设备,测量设备,或其他计算作业的大量数据集的采集。采集后,使用大规模计算作业的分析来生成最终数据集。通常,这些结果将提供给更多的受众。



1.  为了将大数据集上传到AWS,关键是拥有最多的可用带宽。 通过多客户端的并行处理,就可以把数据上传到S3, 每个客户端采用多线程技术实现并行上传或上传多部分以便进一步并行处理。像窗口调整和确认选择等TCP设置是可以调整的,以便进一步增强吞吐量。 通过适当的优化,一天上传几TB是可能的。另一种上传大数据集的方法是Amazon Import/Export功能, 这一功能支持将存储设备发送给AWS同时直接插入到Amazon S3 或者 Amazon EBS。

 

2.  大规模作业的并行处理是关键,现存的并行处理应用能够运行在多个EC2 实例上. 如果应用程序需要一个POSIX风格的文件系统,那么无论是直接使用HTTP或使用FUSE层(例如,S3FS或SubCloud),并行应用程序对所有节点都可以从S3高效地读取和写入数据。

 

3.  一旦计算完成,结果数据也被存储到S3, EC2 实例可以被关闭,并且将结果数据集就可被下载了,或者通过授予读取权限来指定用户,指定所有人或使用有限时间的URL,完成输出数据与他人的共享。

 

4.  如果不用 S3, 也可以使用 Amazon EBS保存输入数据,作为临时存储区,或者获得输出结果。 在上传期间,要同样采用并行流上传和TCP调整的技术。另外,还可以使用UDP使上传加速。结果数据集可以被写入EBS卷,时间快照可采取共享卷的方式。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
1082 3
|
4月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
368 6
|
5月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
5月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
890 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
6月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
348 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
6月前
|
机器学习/深度学习 数据采集 存储
技术赋能下的能源智慧管理:MyEMS 开源系统的架构创新与应用深化
在全球能源转型与“双碳”战略推动下,MyEMS作为基于Python的开源能源管理系统,凭借模块化架构与AI技术,助力重点用能单位实现数字化、智能化能源管理。系统支持多源数据采集、智能分析、设备数字孪生与自适应优化控制,全面满足国家级能耗监测要求,并已在制造、数据中心、公共建筑等领域成功应用,助力节能降碳,推动绿色可持续发展。
195 0
|
4月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。