基于AWS的时序处理应用架构

简介: 当数据用来作为定期连续测量时,它被称为时间序列信息。通过AWS的独特定位解决了基于时间序列的信息处理带来了规模化挑战。 这种弹性是通过AutoScaling组进行采集处理,Amazon Elastic MapReduce定时作业的AWS数据管道,系统间数据编排的AWS数据管道,大规模数据分析的AmazonRedshift来实现的。

当数据用来作为定期连续测量时,它被称为时间序列信息。通过AWS的独特定位解决了基于时间序列的信息处理带来了规模化挑战。

 

这种弹性是通过AutoScaling组进行采集处理,Amazon Elastic MapReduce定时作业的AWS数据管道,系统间数据编排的AWS数据管道,大规模数据分析的AmazonRedshift来实现的。关键架构要素包括用于消息缓冲的SQS,它减少了频繁AWS数据管道调度,保持了整体解决方案的成本预测和控制。



1.  远程设备,如电表,移动客户端,广告网络客户端,工业仪表,卫星和环境测量工具感知着他们周围的世界,并通过HTTP(S)发送采样传感器数据作为信息进行处理。

 

2.  发送到Amazon Simple QueueService 队列的信息通过自扩展的AmazonEC2 进一步存储到 Amazon DynamoDB。 DynamoDB 中的表是一个基于时间且面向星期的表结构。

 

3.  如果存在一个一个监督控制和数据采集(SCADA)的系统,可以从Amazon DynamoDB 创建采样数据流来分别支持另外的云计算或其他的现有系统。

 

4.  通过一个定时的Amazon ElasticMapReduce作业来创建数据管道,可以同时计算密集的采样处理并输出采样结果。

 

5.  数据管道将结果存储到Amazon Redshift用于进一步的分析。

 

6.  数据管道将面向星期的历史采样数据表从AmazonDynamoDB 导出到Amazon Simple Storage Service (Amazon S3)。

 

7.  数据管道将结果导出为其他可接受的自定义格式。

 

 

8.  Amazon Redshift 作为选项来保留历史采样数据及计算结果。

 

9.  用内部或亚马逊合作伙伴的商业智能解决方案,AmazonRedshift可以支持其他的大规模分析。


目录
相关文章
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
678 3
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
192 6
|
2月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
399 0
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
3月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
237 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
3月前
|
机器学习/深度学习 数据采集 存储
技术赋能下的能源智慧管理:MyEMS 开源系统的架构创新与应用深化
在全球能源转型与“双碳”战略推动下,MyEMS作为基于Python的开源能源管理系统,凭借模块化架构与AI技术,助力重点用能单位实现数字化、智能化能源管理。系统支持多源数据采集、智能分析、设备数字孪生与自适应优化控制,全面满足国家级能耗监测要求,并已在制造、数据中心、公共建筑等领域成功应用,助力节能降碳,推动绿色可持续发展。
115 0
|
1月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
4月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
246 0

热门文章

最新文章