如何评估社交网络中信息内容的价值呢?

简介: 版权声明:本文为半吊子子全栈工匠(wireless_com,同公众号)原创文章,未经允许不得转载。
版权声明:本文为半吊子子全栈工匠(wireless_com,同公众号)原创文章,未经允许不得转载。 https://blog.csdn.net/wireless_com/article/details/51043078
一般的移动社交网络可以认为是由人和内容组成的一个双模网络,在添加位置信息,或者对内容的类型进行细分之后,可以演变成多模复杂网络。信息内容在社交网络中具有相当重要的地位,因为从本质上讲,社交的目的应该是信息的交换。信息、观念和看法的改变是相对较快的,信息内容和社交结构最终构成一个双重反馈回路,社交结构影响信息扩散,而信息则影响社会结构的变化。

如何看待社交网络中信息内容的价值呢?本着面向对象的思想,在这个双模网络中有两类节点:信息内容和人。 人和信息之间的关系是双向的, 因而可以从三个方面评估信息内容的价值:信息对人的影响Ve,人对信息的评价反馈Vf,信息内容本体Vs。

1) 信息对人的影响

根据社交网络中信息内容和我之间的关系,可以分为以下多个维度:
相关性(Relevance):
我是否关心?这条内容与我什么关系呢?

显著性(slinky):
这是相关性在时间维度上的体现,表明我现在或在未来一段时间内释放是否关心改内容?

共鸣性(Resonance):
信息的内容和我所相信的内容是否一致?

严重性(severity):
信息的内容有多好或有多坏?

紧迫性(immediacy):
看到这个信息内容是否需要马上行动?与严重性一起,表示看到信息内容后不作出任何行动的后果。

确定性(certainty):
这个信息内容的效果是否会导致某种痛苦或快乐?或者这种概率非常小?

信源(source):
信息内容来自那里?我是否信任发出信息的人?这是否曾被人吗所验证?

娱乐性(entertainment):
信息的内容是否好玩?是否耐读?

姑且如此吧,目前,还没有想到更多的维度。如果可以对一条内容的每个维度给予赋值,并且给出权重,那么

信息内容对人影响的价值评估Ve:

Ve = a0*Releavance+a1*Slinky +a2*Resonance+
a3*Severity+a4*imediacy+a5*Certaincy +
a6* source+ a7*Entertainment

且 a0+a1+a2+a3+a4+a5+a6+a7=1

2)人对信息的评价反馈

这里主要指多人对信息的统计量,可以分为以下几个维度:
态度(Attitudes):
对改信息的点赞,拍砖之类的总数,是轻交互。

评论(Comments):
对该信息参与程度,还可以对评论的价值,评论的来源等参数进行细化,评论也是一条信息,相当于在一定上下文条件下的递归。

传播(Forwards):
例如转发的数量,覆盖的范围等等。

人对信息内容反馈的价值评估Vf:
Vf = b0*Attitudes + b1 * Comments + b2 * Forwards

3)信息内容自身

信息容量(capacity):
这是信息内容自身的属性,指内容的大小

信息内容的表达形式(format)
内容的呈现形式,文字,语音,图片,视频拥有不同的权重。

信息内容自身属性的价值评估Vs:
Vs = c0 * Capacity + c1 * Format

同样使用线性模型,那么信息内容的价值

Vm = m1*Ve + m2*Vf +m3*Vs

对不同的社交网络,信息的某些维度可能难于计算,而且涉及到时序分析,但是自己总算有了一个信息内容评估的标准,尽管粗糙,但是在一定程度上可以实现对内容价值的感知。

目录
相关文章
|
21天前
|
安全 Linux 网络安全
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
62 0
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
|
8月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
418 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
5月前
|
安全 Ubuntu Linux
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
167 0
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
|
6月前
|
XML 安全 网络安全
Nipper 3.7.0 Windows x64 - 网络设备漏洞评估
Nipper 3.7.0 Windows x64 - 网络设备漏洞评估
127 0
Nipper 3.7.0 Windows x64 - 网络设备漏洞评估
|
7月前
|
机器学习/深度学习 存储 人工智能
SAFEARENA: 评估自主网络代理的安全性
基于大语言模型的智能体在解决基于网络的任务方面正变得越来越熟练。随着这一能力的增强,也随之带来了更大的被恶意利用的风险,例如在在线论坛上发布虚假信息,或在网站上销售非法物质。为了评估这些风险,我们提出了SAFEARENA,这是第一个专注于故意滥用网络代理的基准测试。SAFEARENA包含四个网站上共计500个任务,其中250个是安全的,250个是有害的。我们将有害任务分为五类:虚假信息、非法活动、骚扰、网络犯罪和社会偏见,旨在评估网络代理的真实滥用情况。我们对包括GPT-4o、Claude-3.5 Sonnet、Qwen-2-VL 72B和Llama-3.2 90B在内的领先基于大语言模型的网
315 11
SAFEARENA: 评估自主网络代理的安全性
|
8月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
329 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
290 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
8月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
163 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
7月前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
420 7
|
8月前
|
机器学习/深度学习 自然语言处理 计算机视觉
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
251 0
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力