《深入分布式缓存》之“每日数十亿级业务下的计数器如何扩展Redis?”

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 版权声明:本文为半吊子子全栈工匠(wireless_com,同公众号)原创文章,未经允许不得转载。 https://blog.csdn.net/wireless_com/article/details/79125017 每日数十亿级业务下的计数器如何扩展Redis?在Feed系统中,有简单数据类型的缓存,有集合类数据的。
版权声明:本文为半吊子子全栈工匠(wireless_com,同公众号)原创文章,未经允许不得转载。 https://blog.csdn.net/wireless_com/article/details/79125017

每日数十亿级业务下的计数器如何扩展Redis?

在Feed系统中,有简单数据类型的缓存,有集合类数据的。还有一些个性业务的缓存。比如大量的计数器场景,存在性判断场景等。微博解决存在性判断业务的缓存层叫EXISTENCE 缓存层,解决计算器场景的缓存叫COUNTER缓存。

EXISTENCE 缓存层主要用于缓存各种存在性判断的业务,诸如是否已赞(liked)、是否已阅读(readed)这类需求。

Feed系统内部有大量的计数场景,如用户维度有关注数、粉丝数、feed发表数,feed维度有转发数、评论数、赞数以及阅读数等。前面提到,按照传统Redis、Memcached计数缓存方案,单单存每日新增的十亿级的计数,就需要新占用百G级的内存,成本开销巨大。因此微博开发了计数服务组件CounterService。下面以计数场景来管中窥豹。

提出问题

对于计数业务,经典的构建模型有两种:1 db+cache模式,全量计数存在db,热数据通过cache加速;2全量存在Redis中。方案1 通用成熟,但对于一致性要求较高的计数服务,以及在海量数据和高并发访问场景下,支持不够友好,运维成本和硬件成本较高,微博上线初期曾使用该方案,在Redis面世后很快用新方案代替。方案2基于Redis的计数接口INCR、DECR,能很方便的实现通用的计数缓存模型,再通过hash分表,master-slave部署方式,可以实现一个中小规模的计数服务。

但在面对千亿级的历史海量计数以及每天十亿级的新增计数,直接使用Redis的计数模型存在严重的成本和性能问题。首先Redis计数作为通用的全内存计数模型,内存效率不高。存储一个key为8字节(long型id)、value为4字节的计数,Redis至少需要耗费65字节。1000亿计数需要100G*65=6.5T以上的内存,算上一个master配3个slave的开销,总共需要26T以上的内存,按单机内存96G计算,扣掉Redis其他内存管理开销、系统占用,需要300-400台机器。如果算上多机房,需要的机器数会更多。其次Redis计数模型的获取性能不高。一条微博至少需要3个计数查询,单次feed请求如果包含15条微博,仅仅微博计数就需要45个计数查询。

解决问题

在Feed系统的计数场景,单条feed的各种计数都有相同的key(即微博id),可以把这些计数存储在一起,就能节省大量的key的存储空间,让1000亿计数变成了330亿条记录;近一半的微博没有转、评论、赞,抛弃db+cache的方案,改用全量存储的方案,对于没有计数为0的微博不再存储,如果查不到就返回0,这样330亿条记录只需要存160亿条记录。然后又对存储结构做了进一步优化,三个计数和key一起一共只需要8+4*3=20字节。总共只需要16G*20=320G,算上1主3从,总共也就只需要1.28T,只需要15台左右机器即可。同时进一步通过对CounterService增加SSD扩展支持,按table滚动,老数据落在ssd,新数据、热数据在内存,1.28T的容量几乎可以用单台机器来承载(当然考虑访问性能、可用性,还是需要hash到多个缓存节点,并添加主从结构)。

计数器组件的架构如图13-14,主要特性如下:

1)  内存优化:通过预先分配的内存数组Table存储计数,并且采用 double hash 解决冲突,避免Redis 实现中的大量指针开销。

2)  Schema支持多列:一个feed id对应的多个计数可以作为一条计数记录,还支持动态增减计数列,每列的计数内存使用精简到bit;

3)  冷热数据分离,根据时间维度,近期的热数据放在内存,之前的冷数据放在磁盘,降低机器成本;

4)  LRU缓存:之前的冷数据如果被频繁访问则放到LRU缓存进行加速;

5)  异步IO线程访问冷数据:冷数据的加载不影响服务的整体性能。


通过上述的扩展,内存占用降为之前的5-10%以下,同时一条feed的评论/赞等多个计数、一个用户的粉丝/关注/微博等多个计数都可以一次性获取,读取性能大幅提升,基本彻底解决了计数业务的成本及性能问题。

欲了解更多有关分布式缓存方面的内容,请阅读《深入分布式缓存:从原理到实践》一书。

 

京东购书,扫描二维码:

 

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
11天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
Redis,分布式缓存演化之路
|
2月前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
189 85
|
11天前
|
NoSQL Redis 数据库
Redis 功能扩展 Lua 脚本 对Redis扩展 eval redis.call redis.pcall
通过本文的介绍,我们详细讲解了 Lua 脚本在 Redis 中的作用、`eval` 命令的使用方法以及 `redis.call` 和 `redis.pcall` 的区别和用法。通过合理使用 Lua 脚本,可以实现复杂的业务逻辑,确保操作的原子性,并减少网络开销,从而提高系统的性能和可靠性。
43 13
|
1月前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
|
1月前
|
缓存 NoSQL 关系型数据库
云端问道21期实操教学-应对高并发,利用云数据库 Tair(兼容 Redis®)缓存实现极速响应
本文介绍了如何通过云端问道21期实操教学,利用云数据库 Tair(兼容 Redis®)缓存实现高并发场景下的极速响应。主要内容分为四部分:方案概览、部署准备、一键部署和完成及清理。方案概览中,展示了如何使用 Redis 提升业务性能,降低响应时间;部署准备介绍了账号注册与充值步骤;一键部署详细讲解了创建 ECS、RDS 和 Redis 实例的过程;最后,通过对比测试验证了 Redis 缓存的有效性,并指导用户清理资源以避免额外费用。
|
2月前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
3月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
3月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
3月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
69 5
|
2天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
111 83