Redis的N种妙用,不仅仅是缓存

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
日志服务 SLS,月写入数据量 50GB 1个月
简介: redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset)Redis用作缓存,主要两个用途:高性能,高并发,因为内存天然支持高并发应用场景分布式锁(string)setnx key value,当key不存在时,将 key 的值设为 value ,返回1。

redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset)

Redis用作缓存,主要两个用途:高性能,高并发,因为内存天然支持高并发

应用场景

分布式锁(string)

setnx key value,当key不存在时,将 key 的值设为 value ,返回1。若给定的 key 已经存在,则setnx不做任何动作,返回0。

当setnx返回1时,表示获取锁,做完操作以后del key,表示释放锁,如果setnx返回0表示获取锁失败,整体思路大概就是这样,细节还是比较多的,有时间单开一篇来讲解

计数器(string)

如知乎每个问题的被浏览器次数

img_c67cff395a4d9344a5b1661458f7fe80.png


img_4422abb137b0def102245535f5469bae.png

消息队列(list)

在list里面一边进,一边出即可

img_576b8206ffab289d2b9b59ffc24af290.png


img_59bae8296ce11d07120b4e86df6eb189.png

新浪/Twitter用户消息列表(list)

img_9beb8474a76f6674663fef6796e1240d.jpe

假如说小编li关注了2个微博a和b,a发了一条微博(编号为100)就执行如下命令

img_a0076c49f965ddc908905e27dc2208e8.png

b发了一条微博(编号为200)就执行如下命令:

img_2b550f70712d34d25bca6fedec39d61f.png

假如想拿最近的10条消息就可以执行如下命令(最新的消息一定在list的最左边):

img_2c2ac68c165714dde2777d5f48a12ba1.png

抽奖活动(set)

img_1ef3e9615a4d234f53858d63808a24e6.png

实现点赞,签到,like等功能(set)

img_67cd547c719d33bae415d3027122a696.png


img_c3b0c7ce16708be44c667c86209c3c66.png

实现关注模型,可能认识的人(set)

img_cc75dc0f3011cdb3ac1c6b63901e831c.jpe

seven关注的人

sevenSub -> {qing, mic, james}

青山关注的人

qingSub->{seven,jack,mic,james}

Mic关注的人

MicSub->{seven,james,qing,jack,tom}

img_83f0eea95d42fce25d9534dd5dfbc671.png

电商商品筛选(set)

img_0e11a552f024af7db071bc05bdd833e1.jpe

每个商品入库的时候即会建立他的静态标签列表如,品牌,尺寸,处理器,内存

img_e45d676da9eb44b4d4cc7ea25fcae56a.png

排行版(zset)

redis的zset天生是用来做排行榜的、好友列表, 去重, 历史记录等业务需求

img_471cfb06d039e2a1b5823ca1c3190b1f.jpe


img_f170e5a3d97b4626be28c68530510814.png


过期策略

定期删除

redis 会将每个设置了过期时间的 key 放入到一个独立的字典中,以后会定期遍历这个字典来删除到期的 key。

定期删除策略

Redis 默认会每秒进行十次过期扫描(100ms一次),过期扫描不会遍历过期字典中所有的 key,而是采用了一种简单的贪心策略。

从过期字典中随机 20 个 key;

删除这 20 个 key 中已经过期的 key;

如果过期的 key 比率超过 1/4,那就重复步骤 1;

惰性删除

除了定期遍历之外,它还会使用惰性策略来删除过期的 key,所谓惰性策略就是在客户端访问这个 key 的时候,redis 对 key 的过期时间进行检查,如果过期了就立即删除,不会给你返回任何东西。

定期删除是集中处理,惰性删除是零散处理。

为什么要采用定期删除+惰性删除2种策略呢?

如果过期就删除。假设redis里放了10万个key,都设置了过期时间,你每隔几百毫秒,就检查10万个key,那redis基本上就死了,cpu负载会很高的,消耗在你的检查过期key上了

但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个key的时候,redis会检查一下 ,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。

并不是key到时间就被删除掉,而是你查询这个key的时候,redis再懒惰的检查一下

通过上述两种手段结合起来,保证过期的key一定会被干掉。

所以说用了上述2种策略后,下面这种现象就不难解释了:数据明明都过期了,但是还占有着内存

内存淘汰策略



这个问题可能有小伙伴们遇到过,放到Redis中的数据怎么没了?

因为Redis将数据放到内存中,内存是有限的,比如redis就只能用10个G,你要是往里面写了20个G的数据,会咋办?当然会干掉10个G的数据,然后就保留10个G的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了

Redis提供的内存淘汰策略有如下几种:

1.noeviction 不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。

2.volatile-lru 尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失。(这个是使用最多的)

3.volatile-ttl 跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl 越小越优先被淘汰。

4.volatile-random 跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。

5.allkeys-lru 区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。这意味着没有设置过期时间的 key 也会被淘汰。

6.allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。

持久化策略

Redis的数据是存在内存中的,如果Redis发生宕机,那么数据会全部丢失,因此必须提供持久化机制。

Redis 的持久化机制有两种,第一种是快照(RDB),第二种是 AOF 日志。快照是一次全量备份,AOF 日志是连续的增量备份。快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。AOF 日志在长期的运行过程中会变的无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长。所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。

RDB是通过Redis主进程fork子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化,AOF 日志存储的是 Redis 服务器的顺序指令序列,AOF 日志只记录对内存进行修改的指令记录。即RDB记录的是数据,AOF记录的是指令

RDB和AOF到底该如何选择?

1.不要仅仅使用 RDB,因为那样会导致你丢失很多数据,因为RDB是隔一段时间来备份数据

2.也不要仅仅使用 AOF,因为那样有两个问题,第一,通过 AOF 做冷备没有RDB恢复速度快; 第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug

3.用RDB恢复内存状态会丢失很多数据,重放AOP日志又很慢。Redis4.0推出了混合持久化来解决这个问题。将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。

缓存雪崩和缓存穿透

缓存雪崩是什么?

假设有如下一个系统,高峰期请求为5000次/秒,4000次走了缓存,只有1000次落到了数据库上,数据库每秒1000的并发是一个正常的指标,完全可以正常工作,但如果缓存宕机了,每秒5000次的请求会全部落到数据库上,数据库立马就死掉了,因为数据库一秒最多抗2000个请求,如果DBA重启数据库,立马又会被新的请求打死了,这就是缓存雪崩。

img_9c0709a048fc6922ed3350f8dea39054.png

如何解决缓存雪崩

事前:redis高可用,主从+哨兵,redis cluster,避免全盘崩溃

事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL被打死

事后:redis持久化,快速恢复缓存数据

缓存穿透是什么?

假如客户端每秒发送5000个请求,其中4000个为黑客的恶意攻击,即在数据库中也查不到。举个例子,用户id为正数,黑客构造的用户id为负数,

如果黑客每秒一直发送这4000个请求,缓存就不起作用,数据库也很快被打死。

img_0b7a30c92d81c5db5a6f81fc67b2e851.png

如何解决缓存穿透

查询不到的数据也放到缓存,value为空,如set -999 “”

总而言之,缓存雪崩就是缓存失效,请求全部全部打到数据库,数据库瞬间被打死。缓存穿透就是查询了一个一定不存在的数据,并且从存储层查不到的数据没有写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义

欢迎工作一到五年的Java工程师朋友们加入Java填坑之路:860113481

群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
26天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
27天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
1月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
193 22
|
20天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
36 5
|
1月前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
158 7
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
64 10
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
50 5
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透及其应对策略
【10月更文挑战第23天】通过以上对 Redis 缓存穿透的详细阐述,我们对这一问题有了更深入的理解。在实际应用中,我们需要根据具体情况综合运用多种方法来解决缓存穿透问题,以保障系统的稳定运行和高效性能。同时,要不断关注技术的发展和变化,及时调整策略,以应对不断出现的新挑战。
48 4
|
存储 缓存 NoSQL
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
快速学习 Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
|
缓存 NoSQL 安全
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记
快速学习6.0Spring Boot 2.0实战 Redis 分布式缓存6.0。
335 0
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记