克拉克拉(KilaKila):大规模实时计算平台架构实战

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
表格存储 Tablestore,50G 2个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: ** 克拉克拉(KilaKila):大规模实时计算平台架构实战**一、产品背景:克拉克拉(KilaKila)是国内专注二次元、主打年轻用户的娱乐互动内容社区软件。KilaKila推出互动语音直播、短视频配音、对话小说等功能,满足当下年轻用户个性化、碎片化的文娱需求。

克拉克拉(KilaKila):大规模实时计算平台架构实战


作者:阿里云MVP田亮

一、产品背景:
克拉克拉(KilaKila)是国内专注二次元、主打年轻用户的娱乐互动内容社区软件。KilaKila推出互动语音直播、短视频配音、对话小说等功能,满足当下年轻用户个性化、碎片化的文娱需求。App用户等级体系作为克拉克拉社区化打造的核心业务,在增强社区活跃度、提高产品留存方面起到至关重要的作用。随着业务规模增长,海量用户行为日志实时采集与计算的瓶颈也日益突出,由于单台服务器的处理能力有限,海量数据分析需要分布式计算模型来替代。通过技术调研与架构选型,最终解决方案采用基于阿里云日志服务(Log Service)与 开源技术Storm为组合的基础架构。

二、实时日志采集:
LogHub 支持客户端、网页、协议、SDK/API等多种日志无损采集方式,所有采集方式均基于Restful API实现,除此之外也可以通过API/SDK实现新的采集方式。对于克拉克拉来说,业务日志会实时输出到本地服务器,通过在日志服务器部署Logtail,即可完成日志的无丢失采集。因业务场景不同,对日志可以根据不同的Topic进行分类,从而满足不同业务的个性化计算需求。此外,LogHup可通过配置自带的投递服务,将海量日志同步到数据仓库中永久存储。

_1

图一:日志采集流程图

通过Logtail来采集Nginx上用户行为的日志到Logstore只需要简单配置相应日志所在的机器组和日志的绝对路径,其从日志落盘服务器到采集工作的完成控制在1秒内。同时Logstore支持多功能的日志检索服务,可以为后续明确用户行为提供快捷的查询服务。其中我们将不同topic的日志存储在不同的Logstore中,供后续不同业务有针对性的实时消费。

_2

图二:克拉克拉topic日志结构图

_3

图三:日志检索

三、实时业务场景:
为满足克拉克拉用户社区目标,该业务主要针对APP用户在直播、小说、视频三大业务线100多种行为场景下完成用户经验值的实时计算,也就是数据值的增删改查。在实时计算层,克拉克拉选择了Storm开源的分布式实时大数据处理框架,而阿里云日志服务对于Storm有着非常好的兼容与支持。
_4

图四:克拉克拉实时计算框架

_5

图五:LogHup 与 Storm关系


上图中红色虚线框中就是LogHub Storm Spout,每个Storm Topology会有一组Spout,同组内的Spout共同负责读取Logstore中全部数据。不同Topology中的Spout相互不干扰。每个Topology需要选择唯一的LogHub Consume Group名字来相互标识,同一 Topology内的Spout通过 Consumer Library来完成负载均衡和自动failover。Spout从LogHub中实时读取数据之后,发送至Topology中的Bolt节点,定期保存消费完成位置作为checkpoint到LogHub服务端。

四、实时数据存储
克拉克拉实时计算框架中存在诸多数据缓存、永久存储等场景需求。面对该问题,克拉克拉采用了阿里云OTS组件方案。OTS也称为表格存储(Table Store)是阿里云自研的NoSQL多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够提供PB级存储、千万TPS以及毫秒级延迟的服务能力。通过使用OTS所提供的Java SDK开发包实现了Storm计算过程中所涉及到的数据存储需求。

_6

图六:克拉克拉OTS存储示例


五、项目总结
该项目以实时性和数据的精确度作为评判指标,所面临的挑战主要是用户行为的高并发,平均每秒百万级别的用户计算量;而针对不同的Logstore的日志处理量将会达到用户计算量的十倍左右。通过基于阿里云日志服务、OTS表格存储组件所搭建的克拉克拉实时计算平台综合能力表现良好,符合产品业务预期。
六、未来展望
以Storm为计算中心的框架虽可满足克拉克拉业务诉求,但相关项目研发效率还可进一步提升。对此,后续将重点调研阿里云另一个高效实时计算组件Blink。Blink 是阿里云实时计算方案,基于开源的Apache Flink。 该技术方案的最大亮点是通过SQL脚本语言来代替现有Java语言所开发的计算逻辑。从研发效率上来讲,SQL脚本更容易上手且运维成本更低,相信到时公司整体实时计算框架的性能将会得到显著的提升。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
101 1
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
85 0
|
19天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
【赵渝强老师】基于大数据组件的平台架构
|
19天前
|
SQL 存储 数据库
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
26天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
61 4
|
1月前
|
监控 API 调度
开放源代码平台Flynn的架构与实现原理
【10月更文挑战第21天】应用程序的生命周期涉及从开发到运行的复杂过程,包括源代码、构建、部署和运行阶段。
|
2月前
|
机器学习/深度学习 自然语言处理 搜索推荐
大厂 10Wqps智能客服平台,如何实现架构演进?
40岁老架构师尼恩,凭借深厚的架构功力,指导众多小伙伴成功转型大模型架构师,实现职业逆袭。尼恩的《LLM大模型学习圣经》系列PDF,从基础理论到实战应用,全面覆盖大模型技术,助力读者成为大模型领域的专家。该系列包括《从0到1吃透Transformer技术底座》《从0到1吃透大模型的基础实操》《从0到1吃透大模型的顶级架构》等,内容详实,适合不同水平的读者学习。此外,尼恩还分享了多个智能客服平台的实际案例,展示了大模型在不同场景中的应用,为读者提供了宝贵的实践经验。更多技术资料和指导,请关注尼恩的《技术自由圈》公众号。
大厂 10Wqps智能客服平台,如何实现架构演进?
|
2月前
|
消息中间件 缓存 Java
亿级流量电商平台微服务架构详解
【10月更文挑战第2天】构建一个能够处理亿级流量的电商平台微服务架构是一个庞大且复杂的任务,这通常涉及到多个微服务、数据库分库分表、缓存策略、消息队列、负载均衡、熔断降级、分布式事务等一系列高级技术和架构模式。
92 3
|
2月前
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。