克拉克拉(KilaKila):大规模实时计算平台架构实战

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
表格存储 Tablestore,50G 2个月
简介: ** 克拉克拉(KilaKila):大规模实时计算平台架构实战**一、产品背景:克拉克拉(KilaKila)是国内专注二次元、主打年轻用户的娱乐互动内容社区软件。KilaKila推出互动语音直播、短视频配音、对话小说等功能,满足当下年轻用户个性化、碎片化的文娱需求。

克拉克拉(KilaKila):大规模实时计算平台架构实战


作者:阿里云MVP田亮

一、产品背景:
克拉克拉(KilaKila)是国内专注二次元、主打年轻用户的娱乐互动内容社区软件。KilaKila推出互动语音直播、短视频配音、对话小说等功能,满足当下年轻用户个性化、碎片化的文娱需求。App用户等级体系作为克拉克拉社区化打造的核心业务,在增强社区活跃度、提高产品留存方面起到至关重要的作用。随着业务规模增长,海量用户行为日志实时采集与计算的瓶颈也日益突出,由于单台服务器的处理能力有限,海量数据分析需要分布式计算模型来替代。通过技术调研与架构选型,最终解决方案采用基于阿里云日志服务(Log Service)与 开源技术Storm为组合的基础架构。

二、实时日志采集:
LogHub 支持客户端、网页、协议、SDK/API等多种日志无损采集方式,所有采集方式均基于Restful API实现,除此之外也可以通过API/SDK实现新的采集方式。对于克拉克拉来说,业务日志会实时输出到本地服务器,通过在日志服务器部署Logtail,即可完成日志的无丢失采集。因业务场景不同,对日志可以根据不同的Topic进行分类,从而满足不同业务的个性化计算需求。此外,LogHup可通过配置自带的投递服务,将海量日志同步到数据仓库中永久存储。

_1

图一:日志采集流程图

通过Logtail来采集Nginx上用户行为的日志到Logstore只需要简单配置相应日志所在的机器组和日志的绝对路径,其从日志落盘服务器到采集工作的完成控制在1秒内。同时Logstore支持多功能的日志检索服务,可以为后续明确用户行为提供快捷的查询服务。其中我们将不同topic的日志存储在不同的Logstore中,供后续不同业务有针对性的实时消费。

_2

图二:克拉克拉topic日志结构图

_3

图三:日志检索

三、实时业务场景:
为满足克拉克拉用户社区目标,该业务主要针对APP用户在直播、小说、视频三大业务线100多种行为场景下完成用户经验值的实时计算,也就是数据值的增删改查。在实时计算层,克拉克拉选择了Storm开源的分布式实时大数据处理框架,而阿里云日志服务对于Storm有着非常好的兼容与支持。
_4

图四:克拉克拉实时计算框架

_5

图五:LogHup 与 Storm关系


上图中红色虚线框中就是LogHub Storm Spout,每个Storm Topology会有一组Spout,同组内的Spout共同负责读取Logstore中全部数据。不同Topology中的Spout相互不干扰。每个Topology需要选择唯一的LogHub Consume Group名字来相互标识,同一 Topology内的Spout通过 Consumer Library来完成负载均衡和自动failover。Spout从LogHub中实时读取数据之后,发送至Topology中的Bolt节点,定期保存消费完成位置作为checkpoint到LogHub服务端。

四、实时数据存储
克拉克拉实时计算框架中存在诸多数据缓存、永久存储等场景需求。面对该问题,克拉克拉采用了阿里云OTS组件方案。OTS也称为表格存储(Table Store)是阿里云自研的NoSQL多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够提供PB级存储、千万TPS以及毫秒级延迟的服务能力。通过使用OTS所提供的Java SDK开发包实现了Storm计算过程中所涉及到的数据存储需求。

_6

图六:克拉克拉OTS存储示例


五、项目总结
该项目以实时性和数据的精确度作为评判指标,所面临的挑战主要是用户行为的高并发,平均每秒百万级别的用户计算量;而针对不同的Logstore的日志处理量将会达到用户计算量的十倍左右。通过基于阿里云日志服务、OTS表格存储组件所搭建的克拉克拉实时计算平台综合能力表现良好,符合产品业务预期。
六、未来展望
以Storm为计算中心的框架虽可满足克拉克拉业务诉求,但相关项目研发效率还可进一步提升。对此,后续将重点调研阿里云另一个高效实时计算组件Blink。Blink 是阿里云实时计算方案,基于开源的Apache Flink。 该技术方案的最大亮点是通过SQL脚本语言来代替现有Java语言所开发的计算逻辑。从研发效率上来讲,SQL脚本更容易上手且运维成本更低,相信到时公司整体实时计算框架的性能将会得到显著的提升。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
183 3
|
2月前
|
运维 监控 负载均衡
探索微服务架构下的服务治理:动态服务管理平台深度解析
探索微服务架构下的服务治理:动态服务管理平台深度解析
|
19天前
|
NoSQL 关系型数据库 MySQL
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
132 56
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
|
6天前
|
存储 JavaScript 开发工具
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
本次的.HarmonyOS Next ,ArkTS语言,HarmonyOS的元服务和DevEco Studio 开发工具,为开发者提供了构建现代化、轻量化、高性能应用的便捷方式。这些技术和工具将帮助开发者更好地适应未来的智能设备和服务提供方式。
30 8
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
|
18天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
57 3
|
17天前
|
弹性计算 Java 数据库
Web应用上云经典架构实战
本课程详细介绍了Web应用上云的经典架构实战,涵盖前期准备、配置ALB、创建服务器组和监听、验证ECS公网能力、环境配置(JDK、Maven、Node、Git)、下载并运行若依框架、操作第二台ECS以及验证高可用性。通过具体步骤和命令,帮助学员快速掌握云上部署的全流程。
|
2月前
|
消息中间件 Java Kafka
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
203 4
|
2月前
|
监控 Nacos 数据安全/隐私保护
动态服务管理平台在微服务架构中的实践与探索
动态服务管理平台在微服务架构中的实践与探索
|
2月前
|
运维 监控 Nacos
探索微服务架构下的服务治理:动态服务管理平台的力量
探索微服务架构下的服务治理:动态服务管理平台的力量
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。