阿里巴巴达摩院发布2019十大科技趋势:语音AI在特定领域通过图灵测试

本文涉及的产品
数据安全中心,免费版
简介: 阿里巴巴达摩院发布2019十大科技趋势。

2018的冬天有点冷,但科技依然拥有瞬间点燃人们激情的魔力。1月2日,阿里巴巴达摩院发布了“2019十大科技趋势”,涵盖了智能城市、数字身份、自动驾驶、图神经网络系统、AI芯片、区块链、5G等领域。在经济下行压力增大的大环境下,阿里巴巴达摩院让人们聚焦到真正创造价值的前沿技术,为2019年的发展提供理论支撑和想象力源泉。

2019年,AI依然将是科技界最热的方向。如果说2018年AI从实验室走入了现实,那么,2019年将开启人类和AI全面合作的新起点。达摩院认为,移动设备上的实时语音生成与真人语音可能将无法区分,甚至语音AI在一些特定对话中将会通过图灵测试。在城市里,会说话的公共设施将会越来越多。

2109868386

AI技术虽然发展最热,但比它更快进入成熟阶段的是生物识别技术。达摩院认为,2019年,生物识别技术将进入大规模应用阶段。过去几年,很多人开始习惯出门不带钱包,不带现金,而未来,不带身份证走遍天下的时代也将不会太遥远。随着3D传感器的快速普及、多种生物特征的融合,每个设备都能更聪明地“看”和“听”。生物识别和活体技术将重塑身份识别和认证,数字身份将成为人的第二张身份证。

在很多人关心的5G领域,达摩院认为,5G网络的连接能力将增强至百亿级,带来海量的机器类通信及连接的深度融合。随着5G时代的来临,网络将向云化、软件化演进,也将会催生全新应用场景,例如车路协同、工业互联网等领域将获得全新的技术赋能。

2018年杭州云栖大会上,杭州城市大脑2.0的发布让人们再次震惊,城市大脑的能力从交通领域延展至包括在消防、城建、环境在内的社会精细化管理。达摩院认为,中国将会有越来越多城市拥有城市大脑。同时,城市实时仿真成为可能,城市局部智能将升级为全局智能,未来会出现更多的力量进行城市大脑技术和应用的研发,实体城市之上将诞生全时空感知、全要素联动、全周期迭代的智能城市,大大推动城市治理水平优化提升。

2018年,曾经炙手可热的自动驾驶经历冰火两重天,从资本企业一拥而上再到普遍看衰,自动驾驶寒冬论一度甚嚣尘上。达摩院认为,单纯依靠“单车智能”的方式革新汽车,确实在很长一段时间内将无法实现终极的无人驾驶,但并不意味着自动驾驶完全进入寒冬。车路协同技术路线,会加快无人驾驶的到来。在未来2-3年内,以物流、运输等限定场景为代表的自动驾驶商业化应用会迎来新的进展,例如固定线路公交、无人配送、园区微循环等商用场景将快速落地。

新技术令人憧憬,但也给人们带来安全和风险的担忧。因此,网络安全将在2019年继续成为科技领域的热点。达摩院认为,未来几年,黑客、黑产攻击不会停止,但数据安全保护技术将加码推出。各国政府都会趋向于推出更加严厉的数据安全政策法规,企业将在个人数据隐私保护上投入更多力量。跨系统的数据追踪溯源相关的技术将得到更加广泛应用。

附:达摩院2019十大科技趋势:

趋势1:城市实时仿真成为可能,智能城市诞生

_1
城市公共基础设施的感知数据与城市实时脉动数据流将汇聚到大计算平台上,算力与算法发展将推动视频等非结构化信息与其他结构化信息实时融合,城市实时仿真成为可能,城市局部智能将升级为全局智能,未来会出现更多的力量进行城市大脑技术和应用的研发,实体城市之上将诞生全时空感知、全要素联动、全周期迭代的智能城市,大大推动城市治理水平优化提升,预计在新的一年,中国会有越来越多城市具有大脑。

趋势2:语音AI在特定领域通过图灵测试

_2
随着端云一体语音交互模组的标准化、低成本化,会说话的公共设施会越来越多,未来每一个空间都至少会有一个可以进行语音交互的触点。随着智能语音技术的提升,移动设备上的实时语音生成与真人语音可能将无法区分,甚至在一些特定对话中通过图灵测试。针对这一领域的规则甚至法律会逐步建立,引导行业走向规范化。

趋势3:AI专用芯片将挑战GPU的绝对统治地位

_3
当下数据中心的AI训练场景下,计算和存储之间数据搬移已成为瓶颈,新一代的基于3D堆叠存储技术的AI芯片架构已经成为趋势。
AI芯片中数据带宽的需求会进一步推动3D堆叠存储芯片在AI训练芯片中的普遍应用。而类脑计算芯片也会在寻找更合适的应用中进一步推动其发展。在数据中心的训练场景,AI专用芯片将挑战GPU的绝对统治地位。真正能充分体现Domain Specific的AI芯片架构还是会更多地体现在诸多边缘场景。

趋势4:超大规模图神经网络系统将赋予机器常识

_4
单纯的深度学习已经成熟,而结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。

趋势5:计算体系结构将被重构

_5
无论是数据中心或者边缘计算场景,计算体系将被重构。未来的计算、存储、网络不仅要满足人工智能对高通量计算力的需求,也要满足物联网场景对低功耗的需求。基于FPGA、GPU、ASIC等计算芯片的异构计算架构,以及新型存储器件的出现,已经为传统计算架构的演进拉开了序幕。从过去以CPU为核心的通用计算而走向由应用驱动(Application-driven) 和技术驱动(Technology-driven)所带来的Domain-specific 体系结构的颠覆性改变,将加速人工智能甚至是量子计算黄金时代的到来。

趋势6:5G网络催生全新应用场景

_6
第五代移动通信技术将使移动带宽大幅度增强,提供近百倍于4G 的峰值速率,促进基于4K/8K超高清视频、AR/VR等沉浸式交互模式的逐步成熟。连接能力将增强至百亿级,带来海量的机器类通信及连接的深度融合。网络向云化、软件化演进,网络可切片成多个相互独立、平行的虚拟子网络,为不同应用提供虚拟专属网络,加上高可靠、低时延、大容量的网络能力,将使车路协同、工业互联网等领域获得全新的技术赋能。

趋势7:数字身份将成为第二张身份证

_7
生物识别技术正逐渐成熟并进入大规模应用阶段。随着3D传感器的快速普及、多种生物特征的融合,每个设备都能更聪明地“看”和“听”。生物识别和活体技术也将重塑身份识别和认证,数字身份将成为人的第二张身份证。从手机解锁、小区门禁到餐厅吃饭、超市收银,再到高铁进站、机场安检以及医院看病,靠脸走遍天下的时代正在加速到来。

趋势8:自动驾驶进入冷静发展期

_8
单纯依靠“单车智能”的方式革新汽车,在很长一段时间内无法实现终极的无人驾驶,但并不意味着自动驾驶完全进入寒冬。车路协同技术路线,会加快无人驾驶的到来。在未来2-3年内,以物流、运输等限定场景为代表的自动驾驶商业化应用会迎来新的进展,例如固定线路公交、无人配送、园区微循环等商用场景将快速落地。

趋势9:区块链回归理性,商业化应用加速

_9
在各行业数字化的进程中,物联网技术将支撑链下世界和链上数据的可信映射,区块链技术将促进可信数据在流转路径上的重组和优化,从而提高流转和协同的效率。在跨境汇款,供应链金融,电子票据和司法存证等众多场景中,区块链将开始融入我们的日常生活。随着“链接”价值的体现,分层架构和跨链互联将成为区块链规模化的技术基础。区块链领域将从过度狂热和过度悲观回归理性,商业化应用有望加速落地。

趋势10:数据安全保护技术加速涌现

_10
各国政府都会趋向于推出更加严厉的数据安全政策法规,企业将在个人数据隐私保护上投入更多力量。未来几年,黑客、黑产攻击不会停止,但数据安全保护技术将加码推出。跨系统的数据追踪溯源相关的技术,比如水印技术,数据资产保护的技术以及面向强对抗的高级反爬虫技术等将得到更加广泛应用。

相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
60 2
|
2月前
|
人工智能 自然语言处理 测试技术
用图灵测试检验AI尤其是大语言模型,真的科学吗?
【9月更文挑战第25天】《Does GPT-4 Pass the Turing Test?》一文评估了先进AI模型GPT-4的图灵测试表现。尽管GPT-4在某些对话中成功迷惑了参与者,但其整体成功率仅为41%,低于人类的63%。图灵测试作为评估AI语言能力的工具依然有效,但存在局限性,如无法评估AI的认知机制且受主观判断影响。此外,测试还引发了关于AI智能及伦理的讨论。
152 6
|
7天前
|
人工智能 算法 新制造
走进北京科技大学,通义灵码与企业高校共筑 AI 创意课堂
近日,通义灵码有幸参与到一场由伊利集团主办的 AIGC 生态创新大赛路演舞台,与高校专家、企业代表、青年学子共同探讨 AIGC 创意应用,交流企业在数智领域转型、青年开发者科技创新的思路和落地实践。
|
1月前
|
机器学习/深度学习 人工智能 监控
AI与未来医疗:重塑健康产业的双刃剑随着科技的迅猛发展,人工智能(AI)正以前所未有的速度融入各行各业,其中医疗领域作为关系到人类生命健康的重要行业,自然也成为AI应用的焦点之一。本文将探讨AI在未来医疗中的潜力与挑战,分析其对健康产业可能带来的革命性变化。
在医疗领域,人工智能不仅仅是一种技术革新,更是一场关乎生死存亡的革命。从诊断到治疗,从后台数据分析到前端临床应用,AI正在全方位地改变传统医疗模式。然而,任何技术的发展都有其两面性,AI也不例外。本文通过深入分析,揭示AI在医疗领域的巨大潜力及其潜在风险,帮助读者更好地理解这一前沿技术对未来健康产业的影响。
|
3月前
|
人工智能 运维 自然语言处理
从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
【8月更文挑战第10天】从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
|
3月前
|
人工智能 Serverless
AI 创作风潮起:函数计算探索科技与艺术的无限可能
AI 创作风潮起:函数计算探索科技与艺术的无限可能。
|
6天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
34 3
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
57 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
237 7
Jmeter实现WebSocket协议的接口测试方法
|
2月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
246 3
快速上手|HTTP 接口功能自动化测试