C++实用编程——随机生成迷宫算法

简介:

我们今天来做一个迷宫游戏。在其中有几个要领:
1.方向的控制
我们建立的迷宫是以坐标的形式出现的,越往上x坐标越小,越往左y坐标越小,这雨平面直角坐标系不同,要注意!

2.随机生成算法:

void init_maze(void); //初始化迷宫
void gotoxy(int x, int y); //移动光标
void path_up(int *x, int *y); //上构路径
void path_down(int *x, int *y); //下构路径
void path_left(int *x, int *y); //左构路径
void path_right(int *x, int *y); //右构路径
void setxy(int x, int y); //指定位打通路径
void path_local(int x, int y); //本置路径

这是我们需要的函数,主要功能呢在代码中有讲到。如果大家自己在编程时需要自己生成迷宫,可以借鉴一下。

3.代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<conio.h>
#include<iostream>
#include<ctime>
#include <windows.h>
using namespace std;
#define UP 72
#define DOWN 80
#define LEFT 75
#define RIGHT 77
 
#define M 40 //迷宫长度
#define N 82 //迷宫宽度
 
char maze[M/2][N/2]; //定义迷宫数组
char path[M-1][N-1]; //定义路径数组
 
void setview(void); //设置控制台窗口信息
int menu_maze(void); //主目录
void startgame(void); //开始游戏
void init_maze(void); //初始化迷宫
void gotoxy(int x, int y); //移动光标
void path_up(int *x, int *y); //上构路径
void path_down(int *x, int *y); //下构路径
void path_left(int *x, int *y); //左构路径
void path_right(int *x, int *y); //右构路径
void setxy(int x, int y); //指定位打通路径
void path_local(int x, int y); //本置路径
void go_up(int *x,int *y); //向上移动
void go_down(int *x,int *y); //向下移动
void go_left(int *x,int *y); //向左移动
void go_right(int *x,int *y); //向右移动
void HideCursor(void); //隐藏光标
void win(void);
 
int T;
int F;
int m;
int n;
int x;
int target;
int flag;
int local_x;
int local_y;
 
int main()
{
 setview();
 while(1)
 {
 switch(menu_maze())
 {
 case 49:
  system("cls");
  startgame();
  continue;
    case 50:exit(0);
  }
  }
}
 
void setview()
{
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE); // 获取标准输出设备句柄
 COORD size = {N*2+167, M*2+43};
 SetConsoleScreenBufferSize(hOut,size); //设置控制台窗口缓冲区大小 
 SMALL_RECT rc = {0,0,167,43};
 SetConsoleWindowInfo(hOut,true ,&rc); //设置窗口位置和大小
 
 SetConsoleTitle("迷宫"); //设置窗口标题
 
 HideCursor(); //隐藏光标
}
 
int menu_maze(void)
{
  char c;
 while(!(c>48&&c<51))
 {
 system("cls");
 printf("\n\n\n\n\n\n\n\n");
 printf("     ………………^欢迎使用DOS迷宫游戏^……………\n");
 printf("     *******************************************\n");
 printf("     **************** 1.开始游戏****************\n");
 printf("     **************** 2.退出游戏****************\n");
 printf("     *******************************************\n");
 c=getch();
 }
  return c;             
}
 
void startgame()             
{ 
 char key;
 local_x=0;
 local_y=0;
 system("cls");
 init_maze();
 gotoxy(2,2);
 printf("");
 while(path[M-2][N-2]!='o')
 {
 key=getch();
 if(key==-32)
 {
  key=getch();
  switch(key)
  {
  case UP:
  if(path[local_x-1][local_y]!='t'&&path[local_x-1][local_y]!='o'||local_x-1<0) break; //路径不通或越界
  go_up(&local_x,&local_y);
  break;
  case DOWN:
  if(path[local_x+1][local_y]!='t'&&path[local_x+1][local_y]!='o'||local_x+1>M-2) break;
  go_down(&local_x,&local_y);
  break;
  case LEFT:
  if(path[local_x][local_y-1]!='t'&&path[local_x][local_y-1]!='o'||local_y-1<0) break;
  go_left(&local_x,&local_y);
  break;
  case RIGHT:
  if(path[local_x][local_y+1]!='t'&&path[local_x][local_y+1]!='o'||local_y+1>N-2) break;
  go_right(&local_x,&local_y);
  break;
  }
 }
 }
 system("cls");
 win();
}
 
void init_maze()
{
 int i,j;
 
 T=1;
 F=1;
 m=0;
 n=0;
 x=0;
 flag=0;
 
 srand((unsigned)time(NULL));
 
 for(i=0;i<M/2;i++) //初始化迷宫数组
 {
 for(j=0;j<N/2;j++)
  maze[i][j]='f';
 }
 
 for(i=0;i<M-1;i++) //初始化路径数组
 {
 for(j=0;j<N-1;j++)
  path[i][j]='f';
 }
 path[0][0]='t';
 
 for(i=0;i<N+1;i++) //边框
 cout<<"**";
 cout<<endl;
 for(i=0;i<M+1;i++)
 {
 for(j=0;j<N+1;j++)
 {
  cout<<"■";
 }
 cout<<endl;
  
 }
 for(i=0;i<N+1;i++)
 cout<<"**";
 cout<<endl;
 
 while(F)//构建迷宫
 {
 if(T==0)
 {
  for(j=0;j<N/2;j++)
  {
  for(i=0;i<M/2;i++)
  {
   if(maze[i][j]=='f')
   {
   m=i;
   n=j;
   maze[m][n]='t';
   path_local(m,n);
   if(maze[m-1][n]==maze[0][0]) //向上有未打通路径
   {
    path_up(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m+1][n]==maze[0][0]) //向下有未打通路径
   {
    path_down(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m][n-1]==maze[0][0]) //向左有未打通路径
   {
    path_left(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m][n+1]==maze[0][0]) //向右有未打通路径
   {
    path_right(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   }
  }
  if(m==i&&n==j)
   break;
  }
 }
 T=1;
 while(T)
 {
  x++;
  if(m==0&&n==0)//光标在起始位置
  {
  maze[m][n]='t';
  path_local(m,n);
  switch(rand()%2)
  {
  case 0://向下
   path_down(&m,&n);
   break;
  case 1://向右
   path_right(&m,&n);
  }
  }
  if(m==M/2-1&&n==0)//光标在左下角
  {
  switch(rand()%2)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break; //已打通路径
   path_up(&m,&n);
   break;
  case 1://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m==0&&n==N/2-1)//光标在右上角
  {
  switch(rand()%2)
  {
  case 0://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  }
  }
  if(m==M/2-1&&n==N/2-1)//光标在右下角
  {
  switch(rand()%2)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  }
  }
  if(m==0&&n!=0&&n!=N/2-1)//光标在第一行
  {
  switch(rand()%3)
  {
  case 0://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n==0)//光标在第一列
  {
  switch(rand()%3)
  {
   
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m==M/2-1&&n!=0&&n!=N/2-1)//光标在最后一行
  {
  switch(rand()%3)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n==N/2-1)//光标在最后一列
  {
  switch(rand()%3)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n!=0&&n!=N/2-1)//光标在中间部分
  {
  switch(rand()%4)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 3://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(x>M*N/4)
  {
  x=0;
  if(m==0&&n==0&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//初始位置死路
  if(m==0&&n==N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//右上角死路
  if(m==M/2-1&&n==0&&maze[m][n+1]==maze[0][0]&&maze[m-1][n]==maze[0][0]) T=0;//左下角死路
  if(m==M/2-1&&n==N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m-1][n]==maze[0][0]) T=0;//终点死路
  if(m==0&&n!=0&&n!=N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//第一行死路
  if(m!=0&&m!=M/2-1&&n==0&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//第一列死路
  if(m!=0&&m!=M/2-1&&n==N/2-1&&maze[m-1][n]==maze[0][0]&&maze[m][n-1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//最后一列死路
  if(m==M/2-1&&n!=0&&n!=N/2-1&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m][n-1]==maze[0][0]) T=0;//最后一行死路
  if(m>0&&m<M/2-1&&n>0&&n<N/2-1&&maze[m+1][n]==maze[0][0]&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m][n-1]==maze[0][0]) T=0;//中间部分死路
  }
 }
 if(flag==M*N/4)
  F=0;
 }
/* i=M+3;
 gotoxy(0,i);
 for(i=0;i<M-1;i++)
 {
 for(j=0;j<N-1;j++)
 {
  if(path[i][j]=='f')
  printf("1");
  if(path[i][j]=='t')
  printf("0");
 }
 printf("\n");
 }
 getch();*/
}
 
void gotoxy(int x, int y)
{
COORD pos = {x,y};
HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleCursorPosition(hOut, pos);
}
 
void path_up(int *x, int *y)
{
 int i,j;
 maze[--(*x)][*y]=maze[0][0];
 path[2*(*x+1)-1][2*(*y)]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+2;
 j=2*(*x)+3;
 gotoxy(i,j);
 printf(" ");
}
 
void path_down(int *x, int *y)
{
 int i,j;
 maze[++(*x)][*y]=maze[0][0];
 path[2*(*x-1)+1][2*(*y)]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+2;
 j=2*(*x)+1;
 gotoxy(i,j);
 printf(" ");
}
  
void path_left(int *x, int *y)
{
 int i,j;
 maze[*x][--(*y)]=maze[0][0];
 path[2*(*x)][2*(*y+1)-1]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+4;
 j=2*(*x)+2;
 gotoxy(i,j);
 printf(" ");
}
 
void path_right(int *x, int *y)
{
 int i,j;
 maze[*x][++(*y)]=maze[0][0];
 path[2*(*x)][2*(*y-1)+1]=path[0][0];
 path_local(*x,*y);
 i=4*(*y);
 j=2*(*x)+2;
 gotoxy(i,j);
 printf(" ");
}
 
void setxy(int x, int y)
{
 gotoxy(x,y);
 printf(" ");
}
 
void path_local(int x, int y)
{
 int i,j;
 i=4*y+2;
 j=2*x+2;
 gotoxy(i,j);
 printf(" ");
 path[2*x][2*y]=path[0][0];
 flag++;
}
 
void go_up(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 j-=1;
 gotoxy(i,j);
 printf("");
 (*x)--;
 path[*x][*y]='o';
}
 
void go_down(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 j+=1;
 gotoxy(i,j);
 printf("");
 (*x)++;
 path[*x][*y]='o';
}
void go_left(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 i-=2;
 gotoxy(i,j);
 printf("");
 (*y)--;
 path[*x][*y]='o';
}
 
void go_right(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 i+=2;
 gotoxy(i,j);
 printf("");
 (*y)++;
 path[*x][*y]='o';
}
 
void HideCursor()
{
CONSOLE_CURSOR_INFO cursor_info = {1, 0}; 
SetConsoleCursorInfo(GetStdHandle(STD_OUTPUT_HANDLE), &cursor_info);
}
 
void win()
{
 printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
 "                                       恭喜你,成功了!");
 getch();
}

怎么样,还是蛮简单的吧?

相关文章
|
24天前
|
存储 C++ UED
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
195 61
|
19天前
|
安全 程序员 编译器
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
|
25天前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
296 0
高精度算法(加、减、乘、除,使用c++实现)
|
25天前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
26 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
36 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
22天前
|
算法 数据处理 C++
c++ STL划分算法;partition()、partition_copy()、stable_partition()、partition_point()详解
这些算法是C++ STL中处理和组织数据的强大工具,能够高效地实现复杂的数据处理逻辑。理解它们的差异和应用场景,将有助于编写更加高效和清晰的C++代码。
16 0
|
25天前
|
算法 定位技术
数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题
本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。
31 0
|
1月前
|
算法 Python
Python算法编程:冒泡排序、选择排序、快速排序
Python算法编程:冒泡排序、选择排序、快速排序
|
1月前
|
存储 算法 决策智能
【算法】博弈论(C/C++)
【算法】博弈论(C/C++)
|
1月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)