阿里云大数据计算服务MaxCompute使用教程

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里云大数据计算服务MaxCompute使用教程 MaxCompute简介 大数据计算服务(MaxCompute,原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。

阿里云大数据计算服务MaxCompute使用教程

MaxCompute简介

大数据计算服务(MaxCompute,原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。MaxCompute主要服务于批量结构化数据的存储和计算,可以提供海量数据仓库的解决方案以及针对大数据的分析建模服务。随着社会数据收集手段的不断丰富及完善,越来越多的行业数据被积累下来。数据规模已经增长到了传统软件行业无法承载的海量数据(百GB、TB、乃至PB)级别。在分析海量数据场景下,由于单台服务器的处理能力限制,数据分析者通常采用分布式计算模式。但分布式的计算模型对数据分析人员提出了较高的要求,且不易维护。使用分布式模型,数据分析人员不仅需要了解业务需求,同时还需要熟悉底层计算模型。MaxCompute的目的是为用户提供一种便捷的分析处理海量数据的手段。用户可以不必关心分布式计算细节,从而达到分析大数据的目的。MaxCompute已经在阿里巴巴集团内部得到大规模应用,例如:大型互联网企业的数据仓库和BI分析、网站的日志分析、电子商务网站的交易分析、用户特征和兴趣挖掘等。

关于MaxCompute使用教程的详细信息:大数据计算服务MaxCompute使用教程

MaxCompute发展历程

从2009年9月阿里云成立,愿景就是做运算/分享数据第一平台;2010年4月,伴随阿里金融的贷款业务上线,ODPS正式投入生产运行,2012年建立统一数据平台,2013年具备超大规模海量数据处理能力,2014~2015年大数据平台开始日趋成熟,2016 MaxCompute 2.0的诞生,成立之初的愿景经过一步步努力逐步实现。

关键性里程碑

2010.04 ODPS正式投入生产运行。阿里金融的贷款业务上线稳定运行。

2013.05 ODPS公测。

2013.07 ODPS正式提供商业化服务,单集群规模5K台服务器多级群能力。

2016.09 ODPS正式更名为MaxCompute,并推出2.0,实现高性能,新功能,富生态。

MaxCompute组件介绍

数据通道:

TUNNEL:提供高并发的离线数据上传下载服务。用户可以使用Tunnel服务向MaxCompute批量上传或下载数据。MaxCompute Tunnel仅提供Java编程接口供用户使用。

计算及分析任务:

SQL :MaxCompute只能以表的形式存储数据,并对外提供了SQL查询功能。用户可以将MaxCompute作为传统的数据库软件操作,但其却能处理TB、PB级别的海量数据。需要注意的是,MaxCompute SQL不支持事务、索引及Update/Delete等操作,同时MaxCompute的SQL语法与Oracle,MySQL有一定差别,用户无法将其他数据库中得SQL语句无缝迁移到MaxCompute上来。此外,在使用方式上,MaxCompute SQL最快可以在分钟,乃至秒级别完成查询,无法在毫秒级别返回用户结果。MaxCompute SQL的优点是对用户的学习成本低,用户不需要了解复杂的分布式计算概念。具备数据库操作经验的用户可以快速熟悉MaxCompute SQL的使用。

MapReduce :MapReduce最早是由Google提出的分布式数据处理模型,随后受到了业内的广泛关注,并被大量应用到各种商业场景中。在本文档中,我们会对MapReduce模型做简要介绍,以便于用户快速熟悉、了解该模型。使用MaxCompute MapReduce的用户需要对分布式计算概念有基本了解,并有相对应的编程经验。MaxCompute MapReduce为用户提供Java编程接口。

Graph:MaxCompute提供的Graph功能是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点(Vertex)和边(Edge)组成,点和边包含权值(Value)。通过迭代对图进行编辑、演化,最终求解出结果,典型应用:PageRank,单源最短距离算法 ,K-均值聚类算法 等等。

SDK:提供给开发者的工具包,SDK的相关介绍请参考 SDK介绍。

安全:MaxCompute提供了功能强大的安全服务,为用户的数据安全提供保护,详情请参考 安全参考手册。
--------------------- 
作者:阿里云小百科 
来源:CSDN 
版权声明:本文为博主原创文章,转载请附上博文链接!
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
1月前
|
SQL 人工智能 分布式计算
ODPS十五周年实录|构建 AI 时代的大数据基础设施
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 张治国:阿里云智能集团技术研究员、阿里云智能计算平台事业部 ODPS-MaxCompute 负责人 活动:【数据进化·AI 启航】ODPS 年度升级发布
|
2月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
2月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
3月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
161 0
|
29天前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
706 33
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
1月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
117 1
|
3月前
|
分布式计算 搜索推荐 算法
Java 大视界 -- Java 大数据在智慧养老服务需求分析与个性化服务匹配中的应用(186)
本篇文章探讨了Java大数据技术在智慧养老服务需求分析与个性化服务匹配中的应用。通过整合老年人健康数据与行为数据,结合机器学习与推荐算法,实现对老年人健康风险的预测及个性化服务推荐,提升养老服务的智能化与精准化水平,助力智慧养老高质量发展。
|
3月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
4月前
|
存储 缓存 分布式计算
OSS大数据分析集成:MaxCompute直读OSS外部表优化查询性能(减少数据迁移的ETL成本)
MaxCompute直读OSS外部表优化方案,解决传统ETL架构中数据同步延迟高、传输成本大、维护复杂等问题。通过存储格式优化(ORC/Parquet)、分区剪枝、谓词下推与元数据缓存等技术,显著提升查询性能并降低成本。结合冷热数据分层与并发控制策略,实现高效数据分析。
|
4月前
|
人工智能 分布式计算 大数据
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
462 2

热门文章

最新文章