tensorflow训练打游戏ai

简介: python3,所需模块请自行补齐# coding=utf8import pygameimport randomfrom pygame.

python3,所需模块请自行补齐

# coding=utf8

import pygame
import random
from pygame.locals import *
import numpy as np
from collections import deque
import tensorflow as tf  # http://blog.topspeedsnail.com/archives/10116
import cv2               # http://blog.topspeedsnail.com/archives/4755

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

SCREEN_SIZE = [320, 400]
BAR_SIZE = [50, 5]
BALL_SIZE = [15, 15]

# 神经网络的输出
MOVE_STAY = [1, 0, 0]
MOVE_LEFT = [0, 1, 0]
MOVE_RIGHT = [0, 0, 1]


class Game(object):
    def __init__(self):
        pygame.init()
        self.clock = pygame.time.Clock()
        self.screen = pygame.display.set_mode(SCREEN_SIZE)
        pygame.display.set_caption('Simple Game')

        self.ball_pos_x = SCREEN_SIZE[0] // 2 - BALL_SIZE[0] / 2
        self.ball_pos_y = SCREEN_SIZE[1] // 2 - BALL_SIZE[1] / 2

        self.ball_dir_x = -1  # -1 = left 1 = right
        self.ball_dir_y = -1  # -1 = up   1 = down
        self.ball_pos = pygame.Rect(
            self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1])

        self.bar_pos_x = SCREEN_SIZE[0] // 2 - BAR_SIZE[0] // 2
        self.bar_pos = pygame.Rect(
            self.bar_pos_x, SCREEN_SIZE[1] - BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1])

    # action是MOVE_STAY、MOVE_LEFT、MOVE_RIGHT
    # ai控制棒子左右移动;返回游戏界面像素数和对应的奖励。(像素->奖励->强化棒子往奖励高的方向移动)
    def step(self, action):

        if action == MOVE_LEFT:
            self.bar_pos_x = self.bar_pos_x - 2
        elif action == MOVE_RIGHT:
            self.bar_pos_x = self.bar_pos_x + 2
        else:
            pass
        if self.bar_pos_x < 0:
            self.bar_pos_x = 0
        if self.bar_pos_x > SCREEN_SIZE[0] - BAR_SIZE[0]:
            self.bar_pos_x = SCREEN_SIZE[0] - BAR_SIZE[0]

        self.screen.fill(BLACK)
        self.bar_pos.left = self.bar_pos_x
        pygame.draw.rect(self.screen, WHITE, self.bar_pos)

        self.ball_pos.left += self.ball_dir_x * 2
        self.ball_pos.bottom += self.ball_dir_y * 3
        pygame.draw.rect(self.screen, WHITE, self.ball_pos)

        if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1] + 1):
            self.ball_dir_y = self.ball_dir_y * -1
        if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
            self.ball_dir_x = self.ball_dir_x * -1

        reward = 0
        if self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
            reward = 1    # 击中奖励
        elif self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
            reward = -1   # 没击中惩罚

        # 获得游戏界面像素
        screen_image = pygame.surfarray.array3d(pygame.display.get_surface())
        pygame.display.update()
        # 返回游戏界面像素和对应的奖励
        return reward, screen_image


# learning_rate
LEARNING_RATE = 0.99
# 更新梯度
INITIAL_EPSILON = 1.0
FINAL_EPSILON = 0.05
# 测试观测次数
EXPLORE = 500000
OBSERVE = 50000
# 存储过往经验大小
REPLAY_MEMORY = 500000

BATCH = 100

# 输出层神经元数。代表3种操作-MOVE_STAY:[1, 0, 0]  MOVE_LEFT:[0, 1, 0]  MOVE_RIGHT:[0, 0, 1]
output = 3
input_image = tf.placeholder("float", [None, 80, 100, 4])  # 游戏像素
action = tf.placeholder("float", [None, output])     # 操作

# 定义CNN-卷积神经网络 参考:http://blog.topspeedsnail.com/archives/10451


def convolutional_neural_network(input_image):
    weights = {'w_conv1': tf.Variable(tf.zeros([8, 8, 4, 32])),
               'w_conv2': tf.Variable(tf.zeros([4, 4, 32, 64])),
               'w_conv3': tf.Variable(tf.zeros([3, 3, 64, 64])),
               'w_fc4': tf.Variable(tf.zeros([3456, 784])),
               'w_out': tf.Variable(tf.zeros([784, output]))}

    biases = {'b_conv1': tf.Variable(tf.zeros([32])),
              'b_conv2': tf.Variable(tf.zeros([64])),
              'b_conv3': tf.Variable(tf.zeros([64])),
              'b_fc4': tf.Variable(tf.zeros([784])),
              'b_out': tf.Variable(tf.zeros([output]))}

    conv1 = tf.nn.relu(tf.nn.conv2d(input_image, weights['w_conv1'], strides=[
                       1, 4, 4, 1], padding="VALID") + biases['b_conv1'])
    conv2 = tf.nn.relu(tf.nn.conv2d(conv1, weights['w_conv2'], strides=[
                       1, 2, 2, 1], padding="VALID") + biases['b_conv2'])
    conv3 = tf.nn.relu(tf.nn.conv2d(conv2, weights['w_conv3'], strides=[
                       1, 1, 1, 1], padding="VALID") + biases['b_conv3'])
    conv3_flat = tf.reshape(conv3, [-1, 3456])
    fc4 = tf.nn.relu(tf.matmul(conv3_flat, weights['w_fc4']) + biases['b_fc4'])

    output_layer = tf.matmul(fc4, weights['w_out']) + biases['b_out']
    return output_layer

# 深度强化学习入门: https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
# 训练神经网络


def train_neural_network(input_image):
    predict_action = convolutional_neural_network(input_image)

    argmax = tf.placeholder("float", [None, output])
    gt = tf.placeholder("float", [None])

    action = tf.reduce_sum(tf.multiply(predict_action, argmax), reduction_indices=1)
    cost = tf.reduce_mean(tf.square(action - gt))
    optimizer = tf.train.AdamOptimizer(1e-6).minimize(cost)

    game = Game()
    D = deque()

    _, image = game.step(MOVE_STAY)
    # 转换为灰度值
    image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
    # 转换为二值
    ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
    input_image_data = np.stack((image, image, image, image), axis=2)

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        saver = tf.train.Saver()

        n = 0
        epsilon = INITIAL_EPSILON
        while True:
            action_t = predict_action.eval(
                feed_dict={input_image: [input_image_data]})[0]

            argmax_t = np.zeros([output], dtype=np.int)
            if(random.random() <= INITIAL_EPSILON):
                maxIndex = random.randrange(output)
            else:
                maxIndex = np.argmax(action_t)
            argmax_t[maxIndex] = 1
            if epsilon > FINAL_EPSILON:
                epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE

            # for event in pygame.event.get():  macOS需要事件循环,否则白屏
            #	if event.type == QUIT:
            #		pygame.quit()
            #		sys.exit()
            reward, image = game.step(list(argmax_t))

            image = cv2.cvtColor(cv2.resize(
                image, (100, 80)), cv2.COLOR_BGR2GRAY)
            ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
            image = np.reshape(image, (80, 100, 1))
            input_image_data1 = np.append(
                image, input_image_data[:, :, 0:3], axis=2)

            D.append((input_image_data, argmax_t, reward, input_image_data1))

            if len(D) > REPLAY_MEMORY:
                D.popleft()

            if n > OBSERVE:
                minibatch = random.sample(D, BATCH)
                input_image_data_batch = [d[0] for d in minibatch]
                argmax_batch = [d[1] for d in minibatch]
                reward_batch = [d[2] for d in minibatch]
                input_image_data1_batch = [d[3] for d in minibatch]

                gt_batch = []

                out_batch = predict_action.eval(
                    feed_dict={input_image: input_image_data1_batch})

                for i in range(0, len(minibatch)):
                    gt_batch.append(
                        reward_batch[i] + LEARNING_RATE * np.max(out_batch[i]))

                optimizer.run(feed_dict={
                              gt: gt_batch, argmax: argmax_batch, input_image: input_image_data_batch})

            input_image_data = input_image_data1
            n = n + 1

            if n % 10000 == 0:
                saver.save(sess, 'game.cpk', global_step=n)  # 保存模型

            print(n, "epsilon:", epsilon, " ", "action:",
                  maxIndex, " ", "reward:", reward)


train_neural_network(input_image)


目录
相关文章
|
1月前
|
并行计算 Shell TensorFlow
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
在使用TensorFlow-GPU训练MTCNN时,如果遇到“Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED”错误,通常是由于TensorFlow、CUDA和cuDNN版本不兼容或显存分配问题导致的,可以通过安装匹配的版本或在代码中设置动态显存分配来解决。
50 1
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
|
1月前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
40 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
2月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
138 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
2月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
2月前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
67 0
|
2月前
|
机器学习/深度学习 人工智能 计算机视觉
AI计算机视觉笔记二十三:PP-Humanseg训练及onnxruntime部署
本文介绍了如何训练并使用PaddleSeg的人像分割模型PP-HumanSeg,将其导出为ONNX格式,并使用onnxruntime进行部署。首先在AutoDL服务器上搭建环境并安装所需库,接着下载数据与模型,完成模型训练、评估和预测。最后,通过paddle2onnx工具将模型转换为ONNX格式,并编写预测脚本验证转换后的模型效果。此过程适用于希望在不同平台上部署人像分割应用的开发者。
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
43 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
无影云桌面