tensorflow训练打游戏ai

简介: python3,所需模块请自行补齐# coding=utf8import pygameimport randomfrom pygame.

python3,所需模块请自行补齐

# coding=utf8

import pygame
import random
from pygame.locals import *
import numpy as np
from collections import deque
import tensorflow as tf  # http://blog.topspeedsnail.com/archives/10116
import cv2               # http://blog.topspeedsnail.com/archives/4755

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

SCREEN_SIZE = [320, 400]
BAR_SIZE = [50, 5]
BALL_SIZE = [15, 15]

# 神经网络的输出
MOVE_STAY = [1, 0, 0]
MOVE_LEFT = [0, 1, 0]
MOVE_RIGHT = [0, 0, 1]


class Game(object):
    def __init__(self):
        pygame.init()
        self.clock = pygame.time.Clock()
        self.screen = pygame.display.set_mode(SCREEN_SIZE)
        pygame.display.set_caption('Simple Game')

        self.ball_pos_x = SCREEN_SIZE[0] // 2 - BALL_SIZE[0] / 2
        self.ball_pos_y = SCREEN_SIZE[1] // 2 - BALL_SIZE[1] / 2

        self.ball_dir_x = -1  # -1 = left 1 = right
        self.ball_dir_y = -1  # -1 = up   1 = down
        self.ball_pos = pygame.Rect(
            self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1])

        self.bar_pos_x = SCREEN_SIZE[0] // 2 - BAR_SIZE[0] // 2
        self.bar_pos = pygame.Rect(
            self.bar_pos_x, SCREEN_SIZE[1] - BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1])

    # action是MOVE_STAY、MOVE_LEFT、MOVE_RIGHT
    # ai控制棒子左右移动;返回游戏界面像素数和对应的奖励。(像素->奖励->强化棒子往奖励高的方向移动)
    def step(self, action):

        if action == MOVE_LEFT:
            self.bar_pos_x = self.bar_pos_x - 2
        elif action == MOVE_RIGHT:
            self.bar_pos_x = self.bar_pos_x + 2
        else:
            pass
        if self.bar_pos_x < 0:
            self.bar_pos_x = 0
        if self.bar_pos_x > SCREEN_SIZE[0] - BAR_SIZE[0]:
            self.bar_pos_x = SCREEN_SIZE[0] - BAR_SIZE[0]

        self.screen.fill(BLACK)
        self.bar_pos.left = self.bar_pos_x
        pygame.draw.rect(self.screen, WHITE, self.bar_pos)

        self.ball_pos.left += self.ball_dir_x * 2
        self.ball_pos.bottom += self.ball_dir_y * 3
        pygame.draw.rect(self.screen, WHITE, self.ball_pos)

        if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1] + 1):
            self.ball_dir_y = self.ball_dir_y * -1
        if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
            self.ball_dir_x = self.ball_dir_x * -1

        reward = 0
        if self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
            reward = 1    # 击中奖励
        elif self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
            reward = -1   # 没击中惩罚

        # 获得游戏界面像素
        screen_image = pygame.surfarray.array3d(pygame.display.get_surface())
        pygame.display.update()
        # 返回游戏界面像素和对应的奖励
        return reward, screen_image


# learning_rate
LEARNING_RATE = 0.99
# 更新梯度
INITIAL_EPSILON = 1.0
FINAL_EPSILON = 0.05
# 测试观测次数
EXPLORE = 500000
OBSERVE = 50000
# 存储过往经验大小
REPLAY_MEMORY = 500000

BATCH = 100

# 输出层神经元数。代表3种操作-MOVE_STAY:[1, 0, 0]  MOVE_LEFT:[0, 1, 0]  MOVE_RIGHT:[0, 0, 1]
output = 3
input_image = tf.placeholder("float", [None, 80, 100, 4])  # 游戏像素
action = tf.placeholder("float", [None, output])     # 操作

# 定义CNN-卷积神经网络 参考:http://blog.topspeedsnail.com/archives/10451


def convolutional_neural_network(input_image):
    weights = {'w_conv1': tf.Variable(tf.zeros([8, 8, 4, 32])),
               'w_conv2': tf.Variable(tf.zeros([4, 4, 32, 64])),
               'w_conv3': tf.Variable(tf.zeros([3, 3, 64, 64])),
               'w_fc4': tf.Variable(tf.zeros([3456, 784])),
               'w_out': tf.Variable(tf.zeros([784, output]))}

    biases = {'b_conv1': tf.Variable(tf.zeros([32])),
              'b_conv2': tf.Variable(tf.zeros([64])),
              'b_conv3': tf.Variable(tf.zeros([64])),
              'b_fc4': tf.Variable(tf.zeros([784])),
              'b_out': tf.Variable(tf.zeros([output]))}

    conv1 = tf.nn.relu(tf.nn.conv2d(input_image, weights['w_conv1'], strides=[
                       1, 4, 4, 1], padding="VALID") + biases['b_conv1'])
    conv2 = tf.nn.relu(tf.nn.conv2d(conv1, weights['w_conv2'], strides=[
                       1, 2, 2, 1], padding="VALID") + biases['b_conv2'])
    conv3 = tf.nn.relu(tf.nn.conv2d(conv2, weights['w_conv3'], strides=[
                       1, 1, 1, 1], padding="VALID") + biases['b_conv3'])
    conv3_flat = tf.reshape(conv3, [-1, 3456])
    fc4 = tf.nn.relu(tf.matmul(conv3_flat, weights['w_fc4']) + biases['b_fc4'])

    output_layer = tf.matmul(fc4, weights['w_out']) + biases['b_out']
    return output_layer

# 深度强化学习入门: https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
# 训练神经网络


def train_neural_network(input_image):
    predict_action = convolutional_neural_network(input_image)

    argmax = tf.placeholder("float", [None, output])
    gt = tf.placeholder("float", [None])

    action = tf.reduce_sum(tf.multiply(predict_action, argmax), reduction_indices=1)
    cost = tf.reduce_mean(tf.square(action - gt))
    optimizer = tf.train.AdamOptimizer(1e-6).minimize(cost)

    game = Game()
    D = deque()

    _, image = game.step(MOVE_STAY)
    # 转换为灰度值
    image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
    # 转换为二值
    ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
    input_image_data = np.stack((image, image, image, image), axis=2)

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        saver = tf.train.Saver()

        n = 0
        epsilon = INITIAL_EPSILON
        while True:
            action_t = predict_action.eval(
                feed_dict={input_image: [input_image_data]})[0]

            argmax_t = np.zeros([output], dtype=np.int)
            if(random.random() <= INITIAL_EPSILON):
                maxIndex = random.randrange(output)
            else:
                maxIndex = np.argmax(action_t)
            argmax_t[maxIndex] = 1
            if epsilon > FINAL_EPSILON:
                epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE

            # for event in pygame.event.get():  macOS需要事件循环,否则白屏
            #	if event.type == QUIT:
            #		pygame.quit()
            #		sys.exit()
            reward, image = game.step(list(argmax_t))

            image = cv2.cvtColor(cv2.resize(
                image, (100, 80)), cv2.COLOR_BGR2GRAY)
            ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
            image = np.reshape(image, (80, 100, 1))
            input_image_data1 = np.append(
                image, input_image_data[:, :, 0:3], axis=2)

            D.append((input_image_data, argmax_t, reward, input_image_data1))

            if len(D) > REPLAY_MEMORY:
                D.popleft()

            if n > OBSERVE:
                minibatch = random.sample(D, BATCH)
                input_image_data_batch = [d[0] for d in minibatch]
                argmax_batch = [d[1] for d in minibatch]
                reward_batch = [d[2] for d in minibatch]
                input_image_data1_batch = [d[3] for d in minibatch]

                gt_batch = []

                out_batch = predict_action.eval(
                    feed_dict={input_image: input_image_data1_batch})

                for i in range(0, len(minibatch)):
                    gt_batch.append(
                        reward_batch[i] + LEARNING_RATE * np.max(out_batch[i]))

                optimizer.run(feed_dict={
                              gt: gt_batch, argmax: argmax_batch, input_image: input_image_data_batch})

            input_image_data = input_image_data1
            n = n + 1

            if n % 10000 == 0:
                saver.save(sess, 'game.cpk', global_step=n)  # 保存模型

            print(n, "epsilon:", epsilon, " ", "action:",
                  maxIndex, " ", "reward:", reward)


train_neural_network(input_image)


目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
102 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
14天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
204 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
1月前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
82 10
|
1月前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
2月前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
74 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
2月前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
88 8
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
111 1
【AI系统】训练后量化与部署
|
1天前
|
数据采集 人工智能 安全
阿里云携手DeepSeek,AI应用落地五折起!
近年来,人工智能技术飞速发展,越来越多的企业希望借助AI的力量实现数字化转型,提升效率和竞争力。然而,AI应用的开发和落地并非易事,企业往往面临着技术门槛高、成本投入大、落地效果难以保障等挑战。
25 1
|
6天前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
66 14
|
8天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
138 27

热门文章

最新文章