解Bug之路-记一次中间件导致的慢SQL排查过程

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
性能测试 PTS,5000VUM额度
简介:

解Bug之路-记一次中间件导致的慢SQL排查过程

前言

最近发现线上出现一个奇葩的问题,这问题让笔者定位了好长时间,期间排查问题的过程还是挺有意思的,正好博客也好久不更新了,就以此为素材写出了本篇文章。

Bug现场

我们的分库分表中间件在经过一年的沉淀之后,已经到了比较稳定的阶段。而且经过线上压测的检验,每秒能够执行1.7W条sql。但线上情况还是有出乎我们意料的情况。有一个业务线反映,每天有几条sql有长达十几秒的超时。而且sql是主键更新或主键查询,更奇怪的是出现超时的是不同的sql,似乎毫无规律可寻,如下图所示:

一个值得注意的点,就是此业务只有一部分流量走我们的中间件,另一部分还是直接走数据库的,而超时的sql只会在连中间件的时候出现,如下图所示:

很明显,是引入了中间件之后导致的问题。

排查是否sql确实慢

由于数据库中间件只关心sql,并没有记录对应应用的traceId,所以很难将对应的请求和sql对应起来。在这里,我们先粗略的统计了在应用端超时的sql的类型是否会有超时的情况。
分析了日志,发现那段时间所有的sql在往后端数据执行的时候都只有0.5ms,非常的快。如下图所示:

看来是中间件和数据库之间的交互是正常的,那么继续排查线索。

寻找超时规律

由于比较难绑定对应请求和中间件执行sql之间的关系,于是笔者就想着列出所有的异常情况,看看其时间点是否有规律,以排查一些批处理导致中间件性能下降的现象。下面是某几条超时sql业务方给出的信息:

业务开始时间 执行sql的应用ip 业务执行耗时(s)
2018-12-24 09:45:24 xx.xx.xx.247 11.75
2018-12-24 12:06:10 xx.xx.xx.240 10.77
2018-12-24 12:07:19 xx.xx.xx.138 13.71
2018-12-24 22:43:07 xx.xx.xx.247 10.77
2018-12-24 22:43:04 xx.xx.xx.245 13.71

看上去貌似没什么规律,慢sql存在于不同的应用ip之上,排除某台应用出问题的可能。
超时时间从早上9点到晚上22点都有发现超时,排除了某个点集中性能下降的可能。

注意到一个微小的规律

笔者观察了一堆数据一段时间,终于发现了一点小规律,如下面两条所示:

业务开始时间 执行sql的应用ip 业务执行耗时(s)
2018-12-24 22:43:07 xx.xx.xx.247 10.77
2018-12-24 22:43:04 xx.xx.xx.245 13.71

这两笔sql超时对应的时间点挺接近的,一个是22:43:07,一个是22:43:04,中间只差了3s,然后与后面的业务执行耗时相加,发现更接近了,让我们重新整理下:

业务开始时间 执行sql的应用ip 业务执行耗时(s) 业务完成时间(s)
2018-12-24 22:43:07 xx.xx.xx.247 10.77 22:43:17.77
2018-12-24 22:43:04 xx.xx.xx.245 13.71 22.43:17.71

发现这两笔业务虽然开始时间不同,但确是同时完成的,这可能是个巧合,也可能是bug出现导致的结果。于是继续看下是否有这些规律的慢sql,让业务又提供了最近的慢sql,发现这种现象虽然少,但是确实发生了不止一次。笔者突然感觉到,这绝对不是巧合。

由上述规律导致的思考

笔者联想到我们中间件有好多台,假设是中间件那边卡住的话,如果在那一瞬间,有两台sql同时落到同一台的话,中间件先卡住,然后在中间件恢复的那一瞬间,以0.5ms的速度执行完再返回就会导致这种现象。如下图所示:

当然了还有另一种可能,就是sql先以0.5ms的速度执行完,然后中间件那边卡住了,和上面的区别只是中间件卡的位置不同而已,另一种可能如下图所示:

是否落到同一台中间件

线上一共4台中间件,在经历了一堆复杂线上日志捞取分析相对应之后,发现那两条sql确实落在了同一台中间件上。为了保证猜想无误,又找了两条符合此规律的sql,同样的也落在同一台中间件上面,而且这两台中间件并不是同一台,排除某台机器有问题。如下图所示:

业务日志和中间件日志相对照

在上述发现的基础上,又经历了各种日志分析对应之后,终于找到了耗时sql日志和业务日志对应的关联。然后发现一个关键信息。中间件在接收到sql时候会打印一条日志,发现在应用发出sql到接收到sql还没来得及做后面的路由逻辑之前就差了10s左右,然后sql执行到返回确是非常快速的,如下图所示:

查看对应中间件那个时间点其它sql有无异常

笔者捞取了那个时间点中间件的日志,发现除了这两条sql之外,其它sql都很正常,整体耗时都在1ms左右,这又让笔者陷入了思考之中。

再从日志中找信息

在对当前中间件的日志做了各种思考各种分析之后,又发现一个诡异的点,发现在1s之内,处理慢sql对应的NIO线程的处理sql数量远远小于其它NIO线程。更进一步,发现在这1s的某个时间点之前,慢sql所在的NIO线程完全不打印任何日志,如下图所示:

同时也发现两条sql都落在对应的Reactor-Thread-2的线程里面,再往前回溯,发现近10s内的线程都没有打印任何信息,好像什么都没处理。如下图所示:

感觉离真相越来越近了。这边就很明显了,reactor线程被卡住了!

寻找reactor线程为何被卡住

笔者继续顺藤摸瓜,比较了一下几个卡住的reactor线程最后打印的日志,发现这几条日志对应的sql都很快返回了,没什么异常。然后又比较了一下几个卡住的reactor线程恢复后打印出来的第一条sql,发现貌似它们通过路由解析起来都很慢,达到了1ms(正常是0.01ms),然后找出了其对应的sql,发现这几条sql都是150K左右的大小,按正常思路,这消失的10s应该就是处理这150K的sql了,如下图所示:

为何处理150K的sql会耗时10s

排查是否是网络问题

首先,这条sql在接入中间件之前就有,也就耗时0.5ms左右。而且中间件在往数据库发送sql的过程中也是差不多的时间。如果说网络有问题的话,那么这段时间应该会变长,此种情况暂不考虑。

排查是否是nio网络处理代码的问题

笔者鉴于可能是中间件nio处理代码的问题,构造了同样的sql在线下进行复现,发现执行很快毫无压力。笔者一度怀疑是线上环境的问题,traceroute了一下发现网络基本和线下搭建的环境一样,都是APP机器直连中间件机器,MTU都是1500,而且中间没有任何路由。思路一下又陷入了停滞。

柳暗花明

思考良久无果之后。笔者觉得排查一下是否是构造的场景有问题,突然发现,线上是用的prepareStatement,而笔者在命令行里面用的是statement,两者是有区别的,prepare是按照select ?,?,?带参数的形式而statement直接是select 1,2,3这样的形式。

而在我们的中间件中,由于后端的数据库对使用prepareStatement的sql具有较大的性能提升,我们也支持了prepareStatement。而且为了能够复用原来的sql解析代码,我们会在接收到对应的sql和参数之后将其还原成不带?的sql算出路由到的数据库节点后,再将原始的带?的sql和参数prepare到对应的数据库,如下图所示:

重新构造prepareStatement场景

笔者重新构造了prepareStatement场景之后,发现在150K的sql下,确实耗时达到了10s,感觉终于见到曙光了。

最终原因字符串拼接

由于是线下,在各种地方打日志之后,终于发现耗时就是在这个将带?的sql渲染为不带问号的sql上面。下面是代码示意:

String sql="select ?,?,?,?,?,?...?,?,?...";
for(int i=0 ; i < paramCount;i++){
    sql = sql.replaceFirst("\\?",param[i]);
}
return sql;

这个replaceFirst在字符串特别大,需要替换的字符频率出现的特别多的时候方面有巨大的性能消耗。之前就发现replaceFirst这个操作里面有正则的操作导致特殊符号不能正确渲染sql(另外参数里面带?也不能正确渲染),于是其改成了用split ?的方式进行sql的渲染。但是这个版本并没有在此应用对应的集群上使用。可能也正是这些额外的正则操作导致了这个replaceFirst性能在这种情况下特别差。

对应优化

将其改成新版本后,新代码如下所示:

String splits[] = sql.split("\\?");
String result="";
for(int i=0;i<splits.length;i++){
    if(i<paramNumber){
        result+=splits[i]+getParamString(paramNumber);
    }else{
        result+=splits[i];
    }
}
return result;

这个解析时间从10s下降到了2s,但感觉还是不够满意。
经同事提醒,试下StringBuilder。由于此应用使用的是jdk1.8,笔者一直觉得jdk1.8已经可以直接用原生的字符串拼接不需要用StringBuilder了。但还是试了一试,发现从2s下降到了8ms!
改成StringBuilder的代码后如下所示:

String splits[] = sql.split("\\?");
StringBuilder builder = new StringBuilder();
for(int i=0;i<splits.length;i++){
    if(i<paramNumber){
        builder.append(splits[i]).append(getParamString(paramNumber));
    }else{
        builder.append(splits[i]);
    }
}
return builder.toString();

笔者查了下资料,发现jdk 1.8虽然做了优化,但是每做一次拼接还是新建了一个StringBuilder,所以在大字符串频繁拼接的场景还是需要用一个StringBuilder,以避免额外的性能损耗。

总结

IO线程不能做任何耗时的操作,这样会导致整个吞吐量急剧下降,对应分库分表这种基础组件在编写代码的时候必须要仔细评估,连java原生的replaceFirst也会在特定情况下出现巨大的性能问题,不能遗漏任何一个点,否则就是下一个坑。
每一次复杂Bug的分析过程都是一次挑战,解决问题最重要也是最困难的是定位问题。而定位问题需要的是在看到现象时候能够浮现出的各种思路,然后通过日志等信息去一条条否决自己的思路,直至达到唯一的那个问题点。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
8月前
|
SQL IDE 关系型数据库
记录一次SQL中的bug的修复过程
记录一次SQL中的bug的修复过程
91 0
|
2月前
|
SQL 关系型数据库 MySQL
惊呆:where 1=1 可能严重影响性能,差了10多倍,快去排查你的 sql
老架构师尼恩在读者交流群中分享了关于MySQL中“where 1=1”条件的性能影响及其解决方案。该条件在动态SQL中常用,但可能在无真实条件时导致全表扫描,严重影响性能。尼恩建议通过其他条件或SQL子句命中索引,或使用MyBatis的`&lt;where&gt;`标签来避免性能问题。他还提供了详细的执行计划分析和优化建议,帮助大家在面试中展示深厚的技术功底,赢得面试官的青睐。更多内容可参考《尼恩Java面试宝典PDF》。
|
5月前
|
SQL 存储 测试技术
SQL Server 查询超时问题排查
【8月更文挑战第14天】遇到SQL Server查询超时,先检查查询复杂度与索引使用;审视服务器CPU、内存及磁盘I/O负载;审查SQL Server配置与超时设置;检测锁和阻塞状况;最后审查应用代码与网络环境。每步定位问题根源,针对性优化以提升查询效率。务必先行备份并在测试环境验证改动。
373 0
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之遇到SQL语法错误,该如何排查
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
7月前
|
存储 SQL 关系型数据库
【BUG记录】Cause: java.sql.SQLException: Incorrect string value: '\xF0\x9F\x90\xA6' for column 'name' at row 1
在MySQL中遇到`Incorrect string value`错误通常是因为尝试插入的字符串包含不被数据库字符集支持的字符,如表情符号。错误根源是MySQL默认的utf8不支持4字节的UTF-8字符(如Emoji)。
753 1
|
6月前
|
SQL 监控 数据库
SQL Server 查询超时问题排查
【7月更文挑战第8天】排查 SQL Server 查询超时涉及五个主要方面:检查复杂查询、评估服务器性能、审视配置参数、更新统计信息和分析执行计划。关注点包括查询的结构(如连接、子查询和索引),服务器资源(CPU、内存、网络延迟),连接和内存设置,以及统计信息的时效性。通过这些步骤可定位并解决性能瓶颈。
140 0
|
SQL 缓存 NoSQL
执行SQL响应比较慢,你有哪些排查思路?
如果面试问你,执行SQL响应慢,你有哪些排查思路和解决方案?这是一位去某里面试的小伙伴跟我分享的面试真题,那今天我给大家来分享一下我的思路。
139 1
|
8月前
|
SQL 监控 关系型数据库
常见的SQL优化和排查性能异常秘籍
常见的SQL优化和排查性能异常秘籍
83 1
|
SQL 前端开发 Java
JSP缺陷问题(bug)管理系统myeclipse开发sql数据库BS模式java编程MVC结构
JSP 缺陷问题(bug)管理系统是一套完善的web设计系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库采用 serlvet dao bean MVC模式进行开发,系统主要采用B/S模式开发。
59 0
|
消息中间件 存储 NoSQL
【2021年遇到最头疼的Bug】【Alibaba中间件技术系列】「RocketMQ技术专题」Broker配置介绍及发送流程、异常(XX Busy)问题分析总结
【2021年遇到最头疼的Bug】【Alibaba中间件技术系列】「RocketMQ技术专题」Broker配置介绍及发送流程、异常(XX Busy)问题分析总结
695 13
【2021年遇到最头疼的Bug】【Alibaba中间件技术系列】「RocketMQ技术专题」Broker配置介绍及发送流程、异常(XX Busy)问题分析总结