Python2.x与3​​.x版本区别

简介: Python的3​​.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。

Python的3​​.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。
为了不带入过多的累赘,Python 3.0在设计的时候没有考虑向下相容。
许多针对早期Python版本设计的程式都无法在Python 3.0上正常执行。
为了照顾现有程式,Python 2.6作为一个过渡版本,基本使用了Python 2.x的语法和库,同时考虑了向Python 3.0的迁移,允许使用部分Python 3.0的语法与函数。
新的Python程式建议使用Python 3.0版本的语法。
除非执行环境无法安装Python 3.0或者程式本身使用了不支援Python 3.0的第三方库。目前不支援Python 3.0的第三方库有Twisted, py2exe, PIL等。
大多数第三方库都正在努力地相容Python 3.0版本。即使无法立即使用Python 3.0,也建议编写相容Python 3.0版本的程式,然后使用Python 2.6, Python 2.7来执行。

Python 3.0的变化主要在以下几个方面:

print 函数

print语句没有了,取而代之的是print()函数。 Python 2.6与Python 2.7部分地支持这种形式的print语法。在Python 2.6与Python 2.7里面,以下三种形式是等价的:

print "fish"
print ("fish") #注意print后面有个空格
print("fish") #print()不能带有任何其它参数
然而,Python 2.6实际已经支持新的print()语法:


from __future__ import print_function
print("fish", "panda", sep=', ')



Unicode

Python 2 有 ASCII str() 类型,unicode() 是单独的,不是 byte 类型。

现在, 在 Python 3,我们最终有了 Unicode (utf-8) 字符串,以及一个字节类:byte 和 bytearrays。

由于 Python3.X 源码文件默认使用utf-8编码,这就使得以下代码是合法的:


>>> 中国 = 'china' 
>>>print(中国) 
china
Python 2.x

>>> str = "我爱北京天安门"
>>> str
'\xe6\x88\x91\xe7\x88\xb1\xe5\x8c\x97\xe4\xba\xac\xe5\xa4\xa9\xe5\xae\x89\xe9\x97\xa8'
>>> str = u"我爱北京天安门"
>>> str
u'\u6211\u7231\u5317\u4eac\u5929\u5b89\u95e8'
Python 3.x

>>> str = "我爱北京天安门"
>>> str
'我爱北京天安门'



除法运算

Python中的除法较其它语言显得非常高端,有套很复杂的规则。Python中的除法有两个运算符,/和//

首先来说/除法:

在python 2.x中/除法就跟我们熟悉的大多数语言,比如Java啊C啊差不多,整数相除的结果是一个整数,把小数部分完全忽略掉,浮点数除法会保留小数点的部分得到一个浮点数的结果。

在python 3.x中/除法不再这么做了,对于整数之间的相除,结果也会是浮点数。

Python 2.x:


>>> 1 / 2

    0
    >>> 1.0 / 2.0
    0.5
    Python 3.x:
    
    >>> 1/2
    0.5

而对于//除法,这种除法叫做floor除法,会对除法的结果自动进行一个floor操作,在python 2.x和python 3.x中是一致的。

python 2.x:



>>> -1 // 2
-1
python 3.x:

>>> -1 // 2
-1

注意的是并不是舍弃小数部分,而是执行 floor 操作,如果要截取整数部分,那么需要使用 math 模块的 trunc 函数

python 3.x:


>>> import math
>>> math.trunc(1 / 2)
0
>>> math.trunc(-1 / 2)
0


异常

在 Python 3 中处理异常也轻微的改变了,在 Python 3 中我们现在使用 as 作为关键词。

捕获异常的语法由 except exc, var 改为 except exc as var。

使用语法except (exc1, exc2) as var可以同时捕获多种类别的异常。 Python 2.6已经支持这两种语法。

  1. 在2.x时代,所有类型的对象都是可以被直接抛出的,在3.x时代,只有继承自BaseException的对象才可以被抛出。
  2. 2.x raise语句使用逗号将抛出对象类型和参数分开,3.x取消了这种奇葩的写法,直接调用构造函数抛出对象即可。

在2.x时代,异常在代码中除了表示程序错误,还经常做一些普通控制结构应该做的事情,在3.x中可以看出,设计者让异常变的更加专一,只有在错误发生的情况才能去用异常捕获语句来处理。


xrange

在 Python 2 中 xrange() 创建迭代对象的用法是非常流行的。比如: for 循环或者是列表/集合/字典推导式。

这个表现十分像生成器(比如。"惰性求值")。但是这个 xrange-iterable 是无穷的,意味着你可以无限遍历。

由于它的惰性求值,如果你不得仅仅不遍历它一次,xrange() 函数 比 range() 更快(比如 for 循环)。尽管如此,对比迭代一次,不建议你重复迭代多次,因为生成器每次都从头开始。

在 Python 3 中,range() 是像 xrange() 那样实现以至于一个专门的 xrange() 函数都不再存在(在 Python 3 中 xrange() 会抛出命名异常)。


import timeit

n = 10000
def test_range(n):
    return for i in range(n):
        pass

def test_xrange(n):
    for i in xrange(n):
        pass   

Python 2


print 'Python', python_version()

print '\ntiming range()' 
%timeit test_range(n)

print '\n\ntiming xrange()' 
%timeit test_xrange(n)

Python 2.7.6

timing range()
1000 loops, best of 3: 433 µs per loop


timing xrange()
1000 loops, best of 3: 350 µs per loop

Python 3


print('Python', python_version())

print('\ntiming range()')
%timeit test_range(n)

Python 3.4.1

timing range()
1000 loops, best of 3: 520 µs per loop
print(xrange(10))



NameError                                 Traceback (most recent call last)
<ipython-input-5-5d8f9b79ea70> in <module>()
----> 1 print(xrange(10))

NameError: name 'xrange' is not defined



八进制字面量表示

八进制数必须写成0o777,原来的形式0777不能用了;二进制必须写成0b111。

新增了一个bin()函数用于将一个整数转换成二进制字串。 Python 2.6已经支持这两种语法。

在Python 3.x中,表示八进制字面量的方式只有一种,就是0o1000。

python 2.x


>>> 0o1000
512
>>> 01000
512

python 3.x


>>> 01000
  File "<stdin>", line 1
    01000
        ^
SyntaxError: invalid token
>>> 0o1000
512


不等运算符

Python 2.x中不等于有两种写法 != 和 <>

Python 3.x中去掉了<>, 只有!=一种写法,还好,我从来没有使用<>的习惯



去掉了repr表达式``

Python 2.x 中反引号``相当于repr函数的作用

Python 3.x 中去掉了``这种写法,只允许使用repr函数,这样做的目的是为了使代码看上去更清晰么?不过我感觉用repr的机会很少,一般只在debug的时候才用,多数时候还是用str函数来用字符串描述对象。


def sendMail(from_: str, to: str, title: str, body: str) -&gt; bool:
    pass


多个模块被改名(根据PEP8)

旧的名字 新的名字
_winreg winreg
ConfigParser configparser
copy_reg copyreg
Queue queue
SocketServer socketserver
repr reprlib
StringIO模块现在被合并到新的io模组内。 new, md5, gopherlib等模块被删除。 Python 2.6已经支援新的io模组。

httplib, BaseHTTPServer, CGIHTTPServer, SimpleHTTPServer, Cookie, cookielib被合并到http包内。

取消了exec语句,只剩下exec()函数。 Python 2.6已经支援exec()函数。


5.数据类型

1)Py3.X去除了long类型,现在只有一种整型——int,但它的行为就像2.X版本的long

2)新增了bytes类型,对应于2.X版本的八位串,定义一个bytes字面量的方法如下:


&gt;&gt;&gt; b = b'china' 
&gt;&gt;&gt; type(b) 
&lt;type 'bytes'&gt; 

str对象和bytes对象可以使用.encode() (str -> bytes) or .decode() (bytes -> str)方法相互转化。


&gt;&gt;&gt; s = b.decode() 
&gt;&gt;&gt; s 
'china' 
&gt;&gt;&gt; b1 = s.encode() 
&gt;&gt;&gt; b1 
b'china'



3)dict的.keys()、.items 和.values()方法返回迭代器,而之前的iterkeys()等函数都被废弃。同时去掉的还有 dict.has_key(),用 in替代它吧 。

来源:https://segmentfault.com/a/1190000017436932

相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
255 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
Python Windows
查看Python版本
【10月更文挑战第8天】查看Python版本
24 2
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
294 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
358 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
存储 大数据 数据处理
Python 中的列表推导式与生成器:特性、用途与区别
Python 中的列表推导式与生成器:特性、用途与区别
24 2
|
1月前
|
存储 C语言 Python
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
21 2
|
2月前
|
存储 Python
Python中类方法、实例方法与静态方法的区别
这三种方法的正确使用可以使代码更加清晰、组织良好并且易于理解,从而有效地支持软件开发的面向对象编程范式。
35 1
|
2月前
|
开发者 Python
Python 的主流版本:Python 3.x
Python 的主流版本:Python 3.x
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
66 0
|
2月前
|
Linux 编译器 开发工具
快速在linux上配置python3.x的环境以及可能报错的解决方案(python其它版本可同样方式安装)
这篇文章介绍了在Linux系统上配置Python 3.x环境的步骤,包括安装系统依赖、下载和解压Python源码、编译安装、修改环境变量,以及常见安装错误的解决方案。
139 1