02 贝叶斯算法 - 案例一 - 鸢尾花数据分类

简介:

01 贝叶斯算法 - 朴素贝叶斯

常规操作:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures
from sklearn.naive_bayes import GaussianNB, MultinomialNB#高斯贝叶斯和多项式朴素贝叶斯
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

# 花萼长度、花萼宽度,花瓣长度,花瓣宽度
iris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature_C = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
features = [2,3]

## 读取数据
path = './datas/iris.data'  # 数据文件路径
data = pd.read_csv(path, header=None)
x = data[list(range(4))]
x = x[features]
y = pd.Categorical(data[4]).codes ## 直接将数据特征转换为0,1,2
print ("总样本数目:%d;特征属性数目:%d" % x.shape)

总样本数目:150;特征属性数目:2


数据分割,形成模型训练数据和测试数据

x_train1, x_test1, y_train1, y_test1 = train_test_split(x, y, train_size=0.8, random_state=14)
x_train, x_test, y_train, y_test = x_train1, x_test1, y_train1, y_test1
print ("训练数据集样本数目:%d, 测试数据集样本数目:%d" % (x_train.shape[0], x_test.shape[0]))

训练数据集样本数目:120, 测试数据集样本数目:30


高斯贝叶斯模型构建

clf = Pipeline([
        ('sc', StandardScaler()),#标准化,把它转化成了高斯分布
        ('poly', PolynomialFeatures(degree=1)),
        ('clf', GaussianNB())]) # MultinomialNB多项式贝叶斯算法中要求特征属性的取值不能为负数
## 训练模型
clf.fit(x_train, y_train)

Pipeline(memory=None,

 steps=[('sc', StandardScaler(copy=True, with_mean=True, with_std=True)), ('poly', PolynomialFeatures(degree=1, include_bias=True, interaction_only=False)), ('clf', GaussianNB(priors=None))])

计算预测值并计算准确率

y_train_hat = clf.predict(x_train)
print ('训练集准确度: %.2f%%' % (100 * accuracy_score(y_train, y_train_hat)))
y_test_hat = clf.predict(x_test)
print ('测试集准确度:%.2f%%' % (100 * accuracy_score(y_test, y_test_hat)))

训练集准确度: 95.83%
测试集准确度:96.67%


产生区域图

N, M = 500, 500     # 横纵各采样多少个值
x1_min1, x2_min1 = x_train.min()
x1_max1, x2_max1 = x_train.max()
x1_min2, x2_min2 = x_test.min()
x1_max2, x2_max2 = x_test.max()
x1_min = np.min((x1_min1, x1_min2))
x1_max = np.max((x1_max1, x1_max2))
x2_min = np.min((x2_min1, x2_min2))
x2_max = np.max((x2_max1, x2_max2))

t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, N)
x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
x_show = np.dstack((x1.flat, x2.flat))[0] # 测试点

cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_show_hat = clf.predict(x_show)      # 预测值
y_show_hat = y_show_hat.reshape(x1.shape)

画图

plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light)     # 预测值的显示
plt.scatter(x_train[features[0]], x_train[features[1]], c=y_train, edgecolors='k', s=50, cmap=cm_dark)
plt.scatter(x_test[features[0]], x_test[features[1]], c=y_test, marker='^', edgecolors='k', s=120, cmap=cm_dark)
plt.xlabel(iris_feature_C[features[0]], fontsize=13)
plt.ylabel(iris_feature_C[features[1]], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'GaussianNB对鸢尾花数据的分类结果, 正确率:%.3f%%' % (100 * accuracy_score(y_test, y_test_hat)), fontsize=18)
plt.grid(True)
plt.show()

03 贝叶斯算法 - 案例二 - 新闻数据分类

相关文章
|
12月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
9034 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
7月前
|
监控 算法 决策智能
基于盲源分离与贝叶斯非局部均值的图像降噪算法
基于盲源分离与贝叶斯非局部均值的图像降噪算法
223 0
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
1143 70
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
304 0
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
254 10
|
11月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
395 1
|
算法 数据可视化 新制造
Threejs路径规划_基于A*算法案例完整版
这篇文章详细介绍了如何在Three.js中完整实现基于A*算法的路径规划案例,包括网格构建、路径寻找算法的实现以及路径可视化展示等方面的内容。
582 0
Threejs路径规划_基于A*算法案例完整版