版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_40254498/article/details/81780244
HashMap
基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。
数据结构
先看下hashmap的数据结构
大概就是如图所示。
table就是数组咯。链表的他们称之为桶。大于阈值就转成红黑树咯,主要是为了提高效率。
使用红黑树来实现。
构造方法
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
其中最主要的是初始化的大小
还有初始化填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
HashMap的容量超过当前数组长度*加载因子,就会执行resize()算法
比如说向水桶中装水,此时HashMap就是一个桶, 这个桶的容量就是加载容量,
而加载因子就是你要控制向这个桶中倒的水不超过水桶容量的比例,比如加载因子是0.75 ,
那么在装水的时候这个桶最多能装到3/4 处,超过这个比例时,桶会自动扩容。
因此,这个桶最多能装水 = 桶的容量 * 加载因子。
/**
* 获取初始值,你输入的初始值,不一定是初始化时所用的初始值。
* 为什么初始值必须是2得倍数呢,下面代码会给你解释。
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
MAXIMUM_CAPACITY = 1<<30;
这样得到的始终是你输入初始值
小于最小的2的次幂,也就是说
比如你输入
15 --->>16
29 --->>32
44 --->>64
重要函数
hash()
/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
// 这一顿操作大概的意思就是保留了高16位的值
// 其实低16位得值也保留了下来,只要在做一次异或,值就变回来了
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
public V put(K key, V value) {}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 看下值放在哪一个table[]
// 这里也有一个为什么table的大小为什么必须是2的倍数的原因
// n 是 tab的长度 那么 (n - 1) & hash 的意思就是?
// 假如 长度为 16(10000) 那么 15(01111) & 就得到最后hash值相当于 h & (length - 1) == h % length
// 这样数组也不会越界等 运算得比%运算得快
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 已经有了,就看下是放在 链表还是红黑树。
else {
Node<K,V> e; K k;
//先比较s是不是在头节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//或者是红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//没办法了,只能是链表了
else {
for (int binCount = 0; ; ++binCount) {
//直接放在尾部
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//链表大于8个阈值直接转成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//存在一模一样的key则跳出继续
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//继续遍历
p = e;
}
}
//如果找到了存放的位置
if (e != null) { // existing mapping for key
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
// onlyIfAbsent是传入的参数 默认w为false直接替换
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
public V get(Object key) {}
相对于put,get就比较简单了。
相对jdk1.7版本
1.7 ---->1.8
位桶+链表 ----> 位桶+链表大于阈值(8)后切换成红黑树
大数据下 O(n)->>O(Logn)
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// table已经初始化,长度大于0,根据hash寻找table中的项也不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//判断是不是第一个结点 是就返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 节点下面还有东西?
if ((e = first.next) != null) {
// 是红黑树吗?
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//不是红黑树那你肯定是链表咯
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
resize()
hashmap的扩容方法
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
//保存旧的
Node<K,V>[] oldTab = table;
//保存长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//保存阈值 需要resize的阈值
int oldThr = threshold;
int newCap, newThr = 0;
// 之前table大小大于0
if (oldCap > 0) {
// 之前table大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 阈值为最大整形
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量翻倍,使用左移,效率更高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// double threshold 阈值翻倍
newThr = oldThr << 1;
// 之前阈值大于0
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 新阈值为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 之前的table已经初始化过
if (oldTab != null) {
// 复制元素,重新进行hash
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果链表只有一个,则直接赋值
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//红黑树啊
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//只能是链表了
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
这一顿操作之后大概就是这个过程吧
END
HashMap运用了许多非常巧妙的算法吧,大量的使用到了位运算,让这个结构运行更稳定更巧妙。每次看都有新收获。