Kubernetes集群的详细部署

简介: 一、集群机器 linux-node1:192.168.56.11 ---master 部署的服务: etcd kube-apiserver kube-controller-manager kube-scheduler docker linux-node2:192.

一、集群机器

linux-node1:192.168.56.11 ---master
部署的服务:
etcd kube-apiserver kube-controller-manager kube-scheduler docker linux-node2:192.168.56.12 ---node
部署的服务:
etcd kubelet kube-proxy docker linux-node3:192.168.56.13 ---node
部署的服务:
etcd kubelet kube-proxy docker

二、环境准备

1、设置主机名

hostnamectl set-hostname linux-node1
hostnamectl set-hostname linux-node2
hostnamectl set-hostname linux-node3
---------- 2、设置部署节点到其它 所有节点的SSH免密码登(包括本机)

[root@linux-node1 ~]# ssh-keygen -t rsa
[root@linux-node1 ~]# ssh-copy-id linux-node1
[root@linux-node1 ~]# ssh-copy-id linux-node2
[root@linux-node1 ~]# ssh-copy-id linux-node3 ---------- 3、绑定主机host

cat > /etc/hosts <<EOF
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.56.11 linux-node1
192.168.56.12 linux-node2
192.168.56.13 linux-node3
EOF
---------- 4、关闭防火墙和selinux

systemctl disable firewalld
systemctl stop firewalld

#关闭selinux
sed -i "s/SELINUX=enforcing/SELINUX=disabled/g" /etc/sysconfig/selinux
sed -i "s/SELINUXTYPE=targeted/SELINUXTYPE=disabled/g" /etc/sysconfig/selinux
---------- 5、其他配置

yum install -y ntpdate wget lrzsz vim net-tools

#加入crontab 1 * * * * /usr/sbin/ntpdate ntp1.aliyun.com >/dev/null 2>&1 #vim /etc/profile 高亮显示 export PS1="\[\e]0;\a\]\n\[\e[1;32m\]\[\e[1;33m\]\H\[\e[1;35m\]<\$(date +\"%Y-%m-%d %T\")> \[\e[32m\]\w\[\e[0m\]\n\u>\\$ " #设置时区
cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #SSH登录慢
sed -i "s/#UseDNS yes/UseDNS no/" /etc/ssh/sshd_config
sed -i "s/GSSAPIAuthentication yes/GSSAPIAuthentication no/" /etc/ssh/sshd_config
systemctl restart sshd.service

三、正式安装

1.安装Docker(三台机器都要操作)

第一步:使用国内Docker源

cd /etc/yum.repos.d/
wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

第二步:Docker安装

yum install -y docker-ce

第三步:启动后台进程

[root@linux-node2 ~]# systemctl start docker
[root@linux-node2 ~]# systemctl enable docker
Created symlink from /etc/systemd/system/multi-user.target.wants/docker.service to /usr/lib/systemd/system/docker.service.

2.安装k8s

1.准备部署目录
 
[root@linux-node1 ~]# mkdir -p /opt/kubernetes/{cfg,bin,ssl,log} #添加环境变量
[root@linux-node1 ~]# echo "PATH=$PATH:/opt/kubernetes/bin" >> /etc/profile
[root@linux-node1 ~]# source /etc/profile
或者
[root@linux-node1 ~]# vim .bash_profile
PATH=$PATH:$HOME/bin:/opt/kubernetes/bin
[root@linux-node1 ~]# source .bash_profile

2.准备软件包

#github下载链接

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.10.md#server-binaries

wget https://storage.googleapis.com/kubernetes-release/release/v1.10.8/kubernetes-server-linux-amd64.tar.gz

wget https://storage.googleapis.com/kubernetes-release/release/v1.10.8/kubernetes-client-linux-amd64.tar.gz

wget https://storage.googleapis.com/kubernetes-release/release/v1.10.8/kubernetes-node-linux-amd64.tar.gz

wget https://storage.googleapis.com/kubernetes-release/release/v1.10.8/kubernetes.tar.gz

3.解压软件包

tar -zxvf kubernetes.tar.gz -C /usr/local/src/
tar -zxvf kubernetes-server-linux-amd64.tar.gz -C /usr/local/src/
tar -zxvf kubernetes-client-linux-amd64.tar.gz -C /usr/local/src/
tar -zxvf kubernetes-node-linux-amd64.tar.gz -C /usr/local/src/

3.手动制作CA证书(只在master上进行即可)

1.安装 CFSSL

[root@linux-node1 ~]# cd /usr/local/src
[root@linux-node1 src]# wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
[root@linux-node1 src]# wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
[root@linux-node1 src]# wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
[root@linux-node1 src]# chmod +x cfssl*
[root@linux-node1 src]# mv cfssl-certinfo_linux-amd64 /opt/kubernetes/bin/cfssl-certinfo
[root@linux-node1 src]# mv cfssljson_linux-amd64 /opt/kubernetes/bin/cfssljson
[root@linux-node1 src]# mv cfssl_linux-amd64 /opt/kubernetes/bin/cfssl #复制cfssl命令文件到k8s-node1和k8s-node2节点。如果实际中多个节点,就都需要同步复制。

[root@linux-node1 ~]# scp /opt/kubernetes/bin/cfssl* 192.168.56.12:/opt/kubernetes/bin
[root@linux-node1 ~]# scp /opt/kubernetes/bin/cfssl* 192.168.56.13:/opt/kubernetes/bin 2.初始化cfssl

[root@linux-node1 src]# mkdir ssl && cd ssl
[root@linux-node1 ssl]# cfssl print-defaults config > config.json --生成ca-config.json的样例(可省略)
[root@linux-node1 ssl]# cfssl print-defaults csr > csr.json --生成ca-csr.json的样例(可省略) 3.创建用来生成 CA 文件的 JSON 配置文件
[root@linux-node1 ssl]#
cat > ca-config.json <<EOF
{
 "signing": {
 "default": {
 "expiry": "87600h"
 },
 "profiles": {
 "kubernetes": {
 "expiry": "87600h",
 "usages": [
 "signing",
 "key encipherment",
 "server auth",
 "client auth"
 ]
 }
 }
 }
}
EOF
[root@linux-node1 ssl]# 4.创建用来生成 CA 证书签名请求(CSR)的 JSON 配置文件

[root@linux-node1 ssl]# 
cat > ca-csr.json <<EOF
{
 "CN": "kubernetes",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "L": "Beijing",
 "ST": "Beijing",
 "O": "k8s",
 "OU": "System"
 }
 ]
}
EOF

5.生成CA证书(ca.pem)和密钥(ca-key.pem)

[root@ linux-node1 ssl]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca - #执行上面的命令后,会生成下面三个文件
ca.csr ca-key.pem ca.pem

[root@ linux-node1 ssl]# ls -l ca*
-rw-r--r-- 1 root root 290 Mar 4 13:45 ca-config.json
-rw-r--r-- 1 root root 1001 Mar 4 14:09 ca.csr
-rw-r--r-- 1 root root 208 Mar 4 13:51 ca-csr.json
-rw------- 1 root root 1679 Mar 4 14:09 ca-key.pem
-rw-r--r-- 1 root root 1359 Mar 4 14:09 ca.pem

6.分发证书

[root@linux-node1 ssl]# cp ca.csr ca.pem ca-key.pem ca-config.json /opt/kubernetes/ssl #SCP证书到k8s-node1和k8s-node2节点
[root@linux-node1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.56.12:/opt/kubernetes/ssl
[root@linux-node1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.56.13:/opt/kubernetes/ssl 

4.手动部署ETCD集群

0.准备etcd软件包

wget https://github.com/coreos/etcd/releases/download/v3.2.18/etcd-v3.2.18-linux-amd64.tar.gz

[root@linux-node1 src]# tar zxf etcd-v3.2.18-linux-amd64.tar.gz
[root@linux-node1 src]# cd etcd-v3.2.18-linux-amd64
[root@linux-node1 etcd-v3.2.18-linux-amd64]# cp etcd etcdctl /opt/kubernetes/bin/ 
[root@linux-node1 etcd-v3.2.18-linux-amd64]# scp etcd etcdctl 192.168.56.12:/opt/kubernetes/bin/
[root@linux-node1 etcd-v3.2.18-linux-amd64]# scp etcd etcdctl 192.168.56.13:/opt/kubernetes/bin/

1.创建 etcd 证书签名请求:

[root@linux-node1]# cd /usr/local/src/ssl

cat > etcd-csr.json <<EOF
{
 "CN": "etcd",
 "hosts": [
 "127.0.0.1",
 "192.168.56.11",
 "192.168.56.12",
 "192.168.56.13"
 ],
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "ST": "BeiJing",
 "L": "BeiJing",
 "O": "k8s",
 "OU": "System"
 }
 ]
}
EOF

2.生成 etcd 证书和私钥:

[root@linux-node1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \
 -ca-key=/opt/kubernetes/ssl/ca-key.pem \
 -config=/opt/kubernetes/ssl/ca-config.json \
 -profile=kubernetes etcd-csr.json | cfssljson -bare etcd

会生成以下证书文件
[root@k8s-master ~]# ls -l etcd*
-rw-r--r-- 1 root root 1045 Mar 5 11:27 etcd.csr
-rw-r--r-- 1 root root 257 Mar 5 11:25 etcd-csr.json
-rw------- 1 root root 1679 Mar 5 11:27 etcd-key.pem
-rw-r--r-- 1 root root 1419 Mar 5 11:27 etcd.pem

3.将证书移动到/opt/kubernetes/ssl目录下

[root@k8s-master ~]# cp etcd*.pem /opt/kubernetes/ssl
[root@linux-node1 ~]# scp etcd*.pem 192.168.56.12:/opt/kubernetes/ssl
[root@linux-node1 ~]# scp etcd*.pem 192.168.56.13:/opt/kubernetes/ssl
[root@k8s-master ~]# rm -f etcd.csr etcd-csr.json

4.设置ETCD配置文件

[root@linux-node1 ~]# vim /opt/kubernetes/cfg/etcd.conf #[member]
ETCD_NAME="etcd-node1"
ETCD_DATA_DIR="/var/lib/etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000"
ETCD_LISTEN_PEER_URLS="https://192.168.56.11:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.56.11:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.56.11:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..."
ETCD_INITIAL_CLUSTER="etcd-node1=https://192.168.56.11:2380,etcd-node2=https://192.168.56.12:2380,etcd-node3=https://192.168.56.13:2380"
ETCD_INITIAL_CLUSTER_STATE="new"
ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.56.11:2379" #[security]
CLIENT_CERT_AUTH="true"
ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
PEER_CLIENT_CERT_AUTH="true"
ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"

5.创建ETCD系统服务

[root@linux-node1 ~]# vim /etc/systemd/system/etcd.service
[Unit]
Description=Etcd Server
After=network.target

[Service]
Type=simple
WorkingDirectory=/var/lib/etcd
EnvironmentFile=-/opt/kubernetes/cfg/etcd.conf
# set GOMAXPROCS to number of processors
ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /opt/kubernetes/bin/etcd"
Type=notify

[Install]
WantedBy=multi-user.target

6.将文件同步到其他节点(并修改差异的地方)
[root@linux-node1 ~]# scp /opt/kubernetes/cfg/etcd.conf 192.168.56.12:/opt/kubernetes/cfg/
[root@linux-node1 ~]# scp /etc/systemd/system/etcd.service 192.168.56.12:/etc/systemd/system/
[root@linux-node1 ~]# scp /opt/kubernetes/cfg/etcd.conf 192.168.56.13:/opt/kubernetes/cfg/
[root@linux-node1 ~]# scp /etc/systemd/system/etcd.service 192.168.56.13:/etc/systemd/system/ #node2的etcd.conf配置

[root@linux-node2 ~]# vim /opt/kubernetes/cfg/etcd.conf #[member]
ETCD_NAME="etcd-node2"
ETCD_DATA_DIR="/var/lib/etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000"
ETCD_LISTEN_PEER_URLS="https://192.168.56.12:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.56.12:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.56.12:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..."
ETCD_INITIAL_CLUSTER="etcd-node1=https://192.168.56.11:2380,etcd-node2=https://192.168.56.12:2380,etcd-node3=https://192.168.56.13:2380"
ETCD_INITIAL_CLUSTER_STATE="new"
ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.56.12:2379" #[security]
CLIENT_CERT_AUTH="true"
ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
PEER_CLIENT_CERT_AUTH="true"
ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem" #node3的etcd.conf配置
[root@linux-node3 ~]# vim /opt/kubernetes/cfg/etcd.conf #[member]
ETCD_NAME="etcd-node3"
ETCD_DATA_DIR="/var/lib/etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000"
ETCD_LISTEN_PEER_URLS="https://192.168.56.13:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.56.13:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.56.13:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..."
ETCD_INITIAL_CLUSTER="etcd-node1=https://192.168.56.11:2380,etcd-node2=https://192.168.56.12:2380,etcd-node3=https://192.168.56.13:2380"
ETCD_INITIAL_CLUSTER_STATE="new"
ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.56.13:2379" #[security]
CLIENT_CERT_AUTH="true"
ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
PEER_CLIENT_CERT_AUTH="true"
ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem"
ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem"
ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"

在所有节点上创建etcd存储目录并启动etcd
[root@linux-node1 ~]# mkdir /var/lib/etcd
[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 ~]# systemctl enable etcd
[root@linux-node1 ~]# systemctl restart etcd
[root@linux-node1 ~]# systemctl status etcd

以上需要大家在所有的 etcd 节点重复上面的步骤,直到所有机器的 etcd 服务都已启动。

7.验证集群

[root@linux-node1 ~]# etcdctl --endpoints=https://192.168.56.11:2379 \
 --ca-file=/opt/kubernetes/ssl/ca.pem \
 --cert-file=/opt/kubernetes/ssl/etcd.pem \
 --key-file=/opt/kubernetes/ssl/etcd-key.pem cluster-health
member 435fb0a8da627a4c is healthy: got healthy result from https://192.168.56.12:2379
member 6566e06d7343e1bb is healthy: got healthy result from https://192.168.56.11:2379
member ce7b884e428b6c8c is healthy: got healthy result from https://192.168.56.13:2379
cluster is healthy

5.Master节点部署

部署Kubernetes API服务部署

0.准备软件包

[root@linux-node1 ~]# cd /usr/local/src/kubernetes
[root@linux-node1 kubernetes]# cp server/bin/kube-apiserver /opt/kubernetes/bin/
[root@linux-node1 kubernetes]# cp server/bin/kube-controller-manager /opt/kubernetes/bin/
[root@linux-node1 kubernetes]# cp server/bin/kube-scheduler /opt/kubernetes/bin/ 1.创建生成CSR的 JSON 配置文件
[root@linux-node1 ~]# cd /usr/local/src/ssl
[root@linux-node1 src]# vim kubernetes-csr.json
cat > kubernetes-csr.json <<EOF
{
 "CN": "kubernetes",
 "hosts": [
 "127.0.0.1",
 "192.168.56.11",
 "10.1.0.1",
 "kubernetes",
 "kubernetes.default",
 "kubernetes.default.svc",
 "kubernetes.default.svc.cluster",
 "kubernetes.default.svc.cluster.local"
 ],
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "ST": "BeiJing",
 "L": "BeiJing",
 "O": "k8s",
 "OU": "System"
 }
 ]
}
EOF

2.生成 kubernetes 证书和私钥

 [root@linux-node1 src]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \
 -ca-key=/opt/kubernetes/ssl/ca-key.pem \
 -config=/opt/kubernetes/ssl/ca-config.json \
 -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes

#执行上面的命令,会生成如下两个文件
kubernetes-key.pem kubernetes.pem

[root@linux-node1 src]# cp kubernetes*.pem /opt/kubernetes/ssl/
[root@linux-node1 ~]# scp kubernetes*.pem 192.168.56.12:/opt/kubernetes/ssl/
[root@linux-node1 ~]# scp kubernetes*.pem 192.168.56.13:/opt/kubernetes/ssl/ 3.创建 kube-apiserver 使用的客户端 token 文件

[root@linux-node1 ~]# head -c 16 /dev/urandom | od -An -t x | tr -d ' '
ad6d5bb607a186796d8861557df0d17f 
[root@linux-node1 ~]# vim /opt/kubernetes/ssl/bootstrap-token.csv
ad6d5bb607a186796d8861557df0d17f,kubelet-bootstrap,10001,"system:kubelet-bootstrap" 4.创建基础用户名/密码认证配置

[root@linux-node1 ~]# vim /opt/kubernetes/ssl/basic-auth.csv
admin,admin,1 readonly,readonly,2 5.部署Kubernetes API Server

[root@linux-node1 ~]# vim /usr/lib/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target

[Service]
ExecStart=/opt/kubernetes/bin/kube-apiserver \
 --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,NodeRestriction \
 --bind-address=192.168.56.11 \
 --insecure-bind-address=127.0.0.1 \
 --authorization-mode=Node,RBAC \
 --runtime-config=rbac.authorization.k8s.io/v1 \
 --kubelet-https=true \
 --anonymous-auth=false \
 --basic-auth-file=/opt/kubernetes/ssl/basic-auth.csv \
 --enable-bootstrap-token-auth \
 --token-auth-file=/opt/kubernetes/ssl/bootstrap-token.csv \
 --service-cluster-ip-range=10.1.0.0/16 \
 --service-node-port-range=20000-40000 \
 --tls-cert-file=/opt/kubernetes/ssl/kubernetes.pem \
 --tls-private-key-file=/opt/kubernetes/ssl/kubernetes-key.pem \
 --client-ca-file=/opt/kubernetes/ssl/ca.pem \
 --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \
 --etcd-cafile=/opt/kubernetes/ssl/ca.pem \
 --etcd-certfile=/opt/kubernetes/ssl/kubernetes.pem \
 --etcd-keyfile=/opt/kubernetes/ssl/kubernetes-key.pem \
 --etcd-servers=https://192.168.56.11:2379,https://192.168.56.12:2379,https://192.168.56.13:2379 \
 --enable-swagger-ui=true \
 --allow-privileged=true \
 --audit-log-maxage=30 \
 --audit-log-maxbackup=3 \
 --audit-log-maxsize=100 \
 --audit-log-path=/opt/kubernetes/log/api-audit.log \
 --event-ttl=1h \
 --v=2 \
 --logtostderr=false \
 --log-dir=/opt/kubernetes/log
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

6.启动API Server服务

[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 ~]# systemctl enable kube-apiserver
[root@linux-node1 ~]# systemctl start kube-apiserver

查看API Server服务状态

[root@linux-node1 ~]# systemctl status kube-apiserver

部署Controller Manager服务

[root@linux-node1 ~]# vim /usr/lib/systemd/system/kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]
ExecStart=/opt/kubernetes/bin/kube-controller-manager \
 --address=127.0.0.1 \ --master=http://127.0.0.1:8080 \ --allocate-node-cidrs=true \ --service-cluster-ip-range=10.1.0.0/16 \ --cluster-cidr=10.2.0.0/16 \ --cluster-name=kubernetes \ --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \ --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \ --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \ --root-ca-file=/opt/kubernetes/ssl/ca.pem \ --leader-elect=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

3.启动Controller Manager

[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 scripts]# systemctl enable kube-controller-manager
[root@linux-node1 scripts]# systemctl start kube-controller-manager 4.查看服务状态

[root@linux-node1 scripts]# systemctl status kube-controller-manager

部署Kubernetes Scheduler

[root@linux-node1 ~]# vim /usr/lib/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]
ExecStart=/opt/kubernetes/bin/kube-scheduler \
 --address=127.0.0.1 \
 --master=http://127.0.0.1:8080 \
 --leader-elect=true \
 --v=2 \
 --logtostderr=false \
 --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

2.部署服务

[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 scripts]# systemctl enable kube-scheduler
[root@linux-node1 scripts]# systemctl start kube-scheduler
[root@linux-node1 scripts]# systemctl status kube-scheduler

部署kubectl 命令行工具

1.准备二进制命令包

[root@linux-node1 ~]# cd /usr/local/src/kubernetes/client/bin
[root@linux-node1 bin]# cp kubectl /opt/kubernetes/bin/ #需要将kubectl复制到node节点
[root@linux-node1 bin]# scp /opt/kubernetes/bin/kubectl linux-node2:/opt/kubernetes/bin/
[root@linux-node1 bin]# scp /opt/kubernetes/bin/kubectl linux-node3:/opt/kubernetes/bin/ 2.创建 admin 证书签名请求

[root@linux-node1 ~]# cd /usr/local/src/ssl/
[root@linux-node1 ssl]# 
cat > admin-csr.json <<EOF
{
 "CN": "admin",
 "hosts": [],
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "ST": "BeiJing",
 "L": "BeiJing",
 "O": "system:masters",
 "OU": "System"
 }
 ]
}
EOF

3.生成 admin 证书和私钥:

[root@linux-node1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \
 -ca-key=/opt/kubernetes/ssl/ca-key.pem \
 -config=/opt/kubernetes/ssl/ca-config.json \
 -profile=kubernetes admin-csr.json | cfssljson -bare admin
[root@linux-node1 ssl]# ls -l admin*
-rw-r--r-- 1 root root 1009 Mar 5 12:29 admin.csr
-rw-r--r-- 1 root root 229 Mar 5 12:28 admin-csr.json
-rw------- 1 root root 1675 Mar 5 12:29 admin-key.pem
-rw-r--r-- 1 root root 1399 Mar 5 12:29 admin.pem

[root@linux-node1 src]# mv admin*.pem /opt/kubernetes/ssl/ 4.设置集群参数

[root@linux-node1 src]# kubectl config set-cluster kubernetes \
 --certificate-authority=/opt/kubernetes/ssl/ca.pem \
 --embed-certs=true \
 --server=https://192.168.56.11:6443
Cluster "kubernetes" set.

5.设置客户端认证参数

[root@linux-node1 src]# kubectl config set-credentials admin \
 --client-certificate=/opt/kubernetes/ssl/admin.pem \
 --embed-certs=true \
 --client-key=/opt/kubernetes/ssl/admin-key.pem
User "admin" set.

6.设置上下文参数

[root@linux-node1 src]# kubectl config set-context kubernetes \
 --cluster=kubernetes \
 --user=admin
Context "kubernetes" created.

7.设置默认上下文

[root@linux-node1 src]# kubectl config use-context kubernetes
Switched to context "kubernetes".

8.使用kubectl工具

[root@linux-node1 ~]# kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok 
scheduler Healthy ok 
etcd-1 Healthy {"health":"true"} 
etcd-2 Healthy {"health":"true"} 
etcd-0 Healthy {"health":"true"} 

6.Node节点部署

部署kubelet

1.二进制包准备 将软件包从linux-node1复制到linux-node2中去。

[root@linux-node1 ~]# cd /usr/local/src/kubernetes/server/bin/
[root@linux-node1 bin]# cp kubelet kube-proxy /opt/kubernetes/bin/
[root@linux-node1 bin]# scp kubelet kube-proxy 192.168.56.12:/opt/kubernetes/bin/
[root@linux-node1 bin]# scp kubelet kube-proxy 192.168.56.13:/opt/kubernetes/bin/

2.创建角色绑定

[root@linux-node1 ~]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
clusterrolebinding "kubelet-bootstrap" created

3.创建 kubelet bootstrapping kubeconfig 文件 设置集群参数

[root@linux-node1 ~]# kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=https://192.168.56.11:6443 \ --kubeconfig=bootstrap.kubeconfig
Cluster "kubernetes" set.

设置客户端认证参数

[root@linux-node1 ~]# kubectl config set-credentials kubelet-bootstrap \ --token=ad6d5bb607a186796d8861557df0d17f \ --kubeconfig=bootstrap.kubeconfig  User "kubelet-bootstrap" set.

设置上下文参数

[root@linux-node1 ~]# kubectl config set-context default \ --cluster=kubernetes \ --user=kubelet-bootstrap \ --kubeconfig=bootstrap.kubeconfig Context "default" created.

选择默认上下文

[root@linux-node1 ~]# kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
Switched to context "default".
[root@linux-node1 kubernetes]# cp bootstrap.kubeconfig /opt/kubernetes/cfg
[root@linux-node1 kubernetes]# scp bootstrap.kubeconfig 192.168.56.12:/opt/kubernetes/cfg
[root@linux-node1 kubernetes]# scp bootstrap.kubeconfig 192.168.56.13:/opt/kubernetes/cfg

在node节点上操作,部署kubelet 1.设置CNI支持

[root@linux-node2 ~]# mkdir -p /etc/cni/net.d
[root@linux-node2 ~]# vim /etc/cni/net.d/10-default.conf
cat > /etc/cni/net.d/10-default.conf <<EOF
{
 "name": "flannel",
 "type": "flannel",
 "delegate": {
 "bridge": "docker0",
 "isDefaultGateway": true,
 "mtu": 1400
 }
}
EOF


2.创建kubelet目录

[root@linux-node2 ~]# mkdir /var/lib/kubelet 3.创建kubelet服务配置

[root@k8s-node2 ~]# vim /usr/lib/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=docker.service
Requires=docker.service

[Service]
WorkingDirectory=/var/lib/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \
 --address=192.168.56.12 \ --hostname-override=192.168.56.12 \ --pod-infra-container-image=mirrorgooglecontainers/pause-amd64:3.0 \ --experimental-bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \ --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \ --cert-dir=/opt/kubernetes/ssl \ --network-plugin=cni \ --cni-conf-dir=/etc/cni/net.d \ --cni-bin-dir=/opt/kubernetes/bin/cni \ --cluster-dns=10.1.0.2 \ --cluster-domain=cluster.local. \ --hairpin-mode hairpin-veth \ --allow-privileged=true \ --fail-swap-on=false \ --logtostderr=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

4.启动Kubelet

[root@linux-node2 ~]# systemctl daemon-reload
[root@linux-node2 ~]# systemctl enable kubelet
[root@linux-node2 ~]# systemctl start kubelet 5.查看服务状态

[root@linux-node2 kubernetes]# systemctl status kubelet 6.查看csr请求 注意是在linux-node1上执行。

[root@linux-node1 ~]# kubectl get csr NAME AGE REQUESTOR CONDITION
node-csr-0_w5F1FM_la_SeGiu3Y5xELRpYUjjT2icIFk9gO9KOU 1m kubelet-bootstrap Pending

7.批准kubelet 的 TLS 证书请求

[root@linux-node1 ~]# kubectl get csr|grep 'Pending' | awk 'NR>0{print $1}'| xargs kubectl certificate approve
成功后是Approved的状态
[root@linux-node1 bin]# kubectl get csr NAME AGE REQUESTOR CONDITION
node-csr-IPMSFbKvwgq2icOeIo2v_WA-qb8QCyA7MT5h4eDmjxg 2m kubelet-bootstrap Approved,Issued

执行完毕后,查看节点状态已经是Ready的状态了 
[root@linux-node1 ~]# kubectl get node NAME STATUS ROLES AGE VERSION 192.168.56.12 Ready <none> 2m v1.10.8 

部署Kubernetes Proxy

1.配置kube-proxy使用LVS

[root@linux-node2 ~]# yum install -y ipvsadm ipset conntrack 2.创建 kube-proxy 证书请求

[root@linux-node1 ~]# cd /usr/local/src/ssl/
[root@linux-node1 ~]# vim kube-proxy-csr.json
cat > kube-proxy-csr.json <<EOF
{
 "CN": "system:kube-proxy",
 "hosts": [],
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "ST": "BeiJing",
 "L": "BeiJing",
 "O": "k8s",
 "OU": "System"
 }
 ]
}
EOF

3.生成证书

[root@linux-node1~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \
 -ca-key=/opt/kubernetes/ssl/ca-key.pem \
 -config=/opt/kubernetes/ssl/ca-config.json \
 -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy

4.分发证书到所有Node节点

[root@linux-node1 ssl]# cp kube-proxy*.pem /opt/kubernetes/ssl/
[root@linux-node1 ssl]# scp kube-proxy*.pem linux-node2:/opt/kubernetes/ssl/
[root@linux-node1 ssl]# scp kube-proxy*.pem linux-node3:/opt/kubernetes/ssl/ 5.创建kube-proxy配置文件

[root@linux-node1 ~]# kubectl config set-cluster kubernetes \
 --certificate-authority=/opt/kubernetes/ssl/ca.pem \
 --embed-certs=true \
 --server=https://192.168.56.11:6443 \
 --kubeconfig=kube-proxy.kubeconfig
Cluster "kubernetes" set.

[root@linux-node1 ~]# kubectl config set-credentials kube-proxy \
 --client-certificate=/opt/kubernetes/ssl/kube-proxy.pem \
 --client-key=/opt/kubernetes/ssl/kube-proxy-key.pem \
 --embed-certs=true \
 --kubeconfig=kube-proxy.kubeconfig
User "kube-proxy" set.

[root@linux-node1 ~]# kubectl config set-context default \
 --cluster=kubernetes \
 --user=kube-proxy \
 --kubeconfig=kube-proxy.kubeconfig
Context "default" created.

[root@linux-node1 ~]# kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
Switched to context "default".

6.分发kubeconfig配置文件

[root@linux-node1 ssl]# cp kube-proxy.kubeconfig /opt/kubernetes/cfg/
[root@linux-node1 ~]# scp kube-proxy.kubeconfig 192.168.56.12:/opt/kubernetes/cfg/
[root@linux-node1 ~]# scp kube-proxy.kubeconfig 192.168.56.13:/opt/kubernetes/cfg/ 7.创建kube-proxy服务配置

[root@linux-node2 bin]# mkdir /var/lib/kube-proxy

[root@k8s-node2 ~]# vim /usr/lib/systemd/system/kube-proxy.service
[Unit]
Description=Kubernetes Kube-Proxy Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target

[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \
 --bind-address=192.168.56.12 \
 --hostname-override=192.168.56.12 \
 --kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig \
--masquerade-all \
 --feature-gates=SupportIPVSProxyMode=true \
 --proxy-mode=ipvs \
 --ipvs-min-sync-period=5s \
 --ipvs-sync-period=5s \
 --ipvs-scheduler=rr \
 --logtostderr=true \
 --v=2 \
 --logtostderr=false \
 --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

8.启动Kubernetes Proxy
[root@linux-node2 ~]# systemctl daemon-reload
[root@linux-node2 ~]# systemctl enable kube-proxy
[root@linux-node2 ~]# systemctl start kube-proxy 9.查看服务状态 查看kube-proxy服务状态

[root@linux-node2 scripts]# systemctl status kube-proxy

检查LVS状态
[root@linux-node2 ~]# ipvsadm -L -n
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.1.0.1:443 rr persistent 10800
 -> 192.168.56.11:6443 Masq 1 0 0 

如果你在两台实验机器都安装了kubelet和proxy服务,使用下面的命令可以检查状态:

[root@linux-node1 ssl]# kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.56.12 Ready <none> 22m v1.10.1 192.168.56.13 Ready <none> 3m v1.10.1

linux-node3节点请自行部署。

7.Flannel部署

1.为Flannel生成证书

[root@linux-node1 ~]# vim flanneld-csr.json
cat > flanneld-csr.json <<EOF
{
 "CN": "flanneld",
 "hosts": [],
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "CN",
 "ST": "BeiJing",
 "L": "BeiJing",
 "O": "k8s",
 "OU": "System"
 }
 ]
}
EOF

2.生成证书

[root@linux-node1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \
 -ca-key=/opt/kubernetes/ssl/ca-key.pem \
 -config=/opt/kubernetes/ssl/ca-config.json \
 -profile=kubernetes flanneld-csr.json | cfssljson -bare flanneld

3.分发证书

[root@linux-node1 ~]# cp flanneld*.pem /opt/kubernetes/ssl/
[root@linux-node1 ~]# scp flanneld*.pem 192.168.56.12:/opt/kubernetes/ssl/
[root@linux-node1 ~]# scp flanneld*.pem 192.168.56.13:/opt/kubernetes/ssl/

4.下载Flannel软件包

[root@linux-node1 ~]# cd /usr/local/src
wget https://github.com/coreos/flannel/releases/download/v0.10.0/flannel-v0.10.0-linux-amd64.tar.gz
[root@linux-node1 src]# tar zxf flannel-v0.10.0-linux-amd64.tar.gz
[root@linux-node1 src]# cp flanneld mk-docker-opts.sh /opt/kubernetes/bin/

复制到linux-node2节点
[root@linux-node1 src]# scp flanneld mk-docker-opts.sh 192.168.56.12:/opt/kubernetes/bin/
[root@linux-node1 src]# scp flanneld mk-docker-opts.sh 192.168.56.13:/opt/kubernetes/bin/

复制对应脚本到/opt/kubernetes/bin目录下。
[root@linux-node1 ~]# cd /usr/local/src/kubernetes/cluster/centos/node/bin/
[root@linux-node1 bin]# cp remove-docker0.sh /opt/kubernetes/bin/
[root@linux-node1 bin]# scp remove-docker0.sh 192.168.56.12:/opt/kubernetes/bin/
[root@linux-node1 bin]# scp remove-docker0.sh 192.168.56.13:/opt/kubernetes/bin/

5.配置Flannel

[root@linux-node1 ~]# vim /opt/kubernetes/cfg/flannel
FLANNEL_ETCD="-etcd-endpoints=https://192.168.56.11:2379,https://192.168.56.12:2379,https://192.168.56.13:2379"
FLANNEL_ETCD_KEY="-etcd-prefix=/kubernetes/network"
FLANNEL_ETCD_CAFILE="--etcd-cafile=/opt/kubernetes/ssl/ca.pem"
FLANNEL_ETCD_CERTFILE="--etcd-certfile=/opt/kubernetes/ssl/flanneld.pem"
FLANNEL_ETCD_KEYFILE="--etcd-keyfile=/opt/kubernetes/ssl/flanneld-key.pem"

复制配置到其它节点上
[root@linux-node1 ~]# scp /opt/kubernetes/cfg/flannel 192.168.56.12:/opt/kubernetes/cfg/
[root@linux-node1 ~]# scp /opt/kubernetes/cfg/flannel 192.168.56.13:/opt/kubernetes/cfg/

6.设置Flannel系统服务

[root@linux-node1 ~]# vim /usr/lib/systemd/system/flannel.service
[Unit]
Description=Flanneld overlay address etcd agent
After=network.target
Before=docker.service

[Service]
EnvironmentFile=-/opt/kubernetes/cfg/flannel
ExecStartPre=/opt/kubernetes/bin/remove-docker0.sh
ExecStart=/opt/kubernetes/bin/flanneld ${FLANNEL_ETCD} ${FLANNEL_ETCD_KEY} ${FLANNEL_ETCD_CAFILE} ${FLANNEL_ETCD_CERTFILE} ${FLANNEL_ETCD_KEYFILE}
ExecStartPost=/opt/kubernetes/bin/mk-docker-opts.sh -d /run/flannel/docker

Type=notify

[Install]
WantedBy=multi-user.target
RequiredBy=docker.service

复制系统服务脚本到其它节点上
scp /usr/lib/systemd/system/flannel.service 192.168.56.12:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/flannel.service 192.168.56.13:/usr/lib/systemd/system/

Flannel CNI集成

下载CNI插件
[root@linux-node1 ~]# cd /usr/local/src https://github.com/containernetworking/plugins/releases
wget https://github.com/containernetworking/plugins/releases/download/v0.7.1/cni-plugins-amd64-v0.7.1.tgz

[root@linux-node1 ~]# mkdir /opt/kubernetes/bin/cni -p
[root@linux-node1 src]# tar zxf cni-plugins-amd64-v0.7.1.tgz -C /opt/kubernetes/bin/cni
scp -r /opt/kubernetes/bin/cni 192.168.56.12:/opt/kubernetes/bin/cni/
scp -r /opt/kubernetes/bin/cni 192.168.56.13:/opt/kubernetes/bin/cni/

创建Etcd的key

/opt/kubernetes/bin/etcdctl --ca-file /opt/kubernetes/ssl/ca.pem \
 --cert-file /opt/kubernetes/ssl/flanneld.pem \
 --key-file /opt/kubernetes/ssl/flanneld-key.pem \
 --no-sync -C https://192.168.56.11:2379,https://192.168.56.12:2379,https://192.168.56.13:2379 \
 mk /kubernetes/network/config '{ "Network": "10.2.0.0/16", "Backend": { "Type": "vxlan", "VNI": 1 }}'

启动flannel

[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 ~]# systemctl enable flannel
[root@linux-node1 ~]# chmod +x /opt/kubernetes/bin/*
[root@linux-node1 ~]# systemctl start flannel

查看服务状态

[root@linux-node1 ~]# systemctl status flannel

配置Docker使用Flannel

[root@linux-node1 ~]# vim /usr/lib/systemd/system/docker.service
[Unit] #在Unit下面修改After和增加Requires
After=network-online.target flannel.service
Wants=network-online.target
Requires=flannel.service

[Service] #增加EnvironmentFile=-/run/flannel/docker
Type=notify
EnvironmentFile=-/run/flannel/docker
ExecStart=/usr/bin/dockerd $DOCKER_OPTS

最终配置
cat /usr/lib/systemd/system/docker.service
[Unit]
Description=Docker Application Container Engine
Documentation=http://docs.docker.com
After=network.target flannel.service
Requires=flannel.service

[Service]
Type=notify
EnvironmentFile=-/run/flannel/docker
EnvironmentFile=-/opt/kubernetes/cfg/docker
ExecStart=/usr/bin/dockerd $DOCKER_OPT_BIP $DOCKER_OPT_MTU $DOCKER_OPTS
LimitNOFILE=1048576
LimitNPROC=1048576
ExecReload=/bin/kill -s HUP $MAINPID
# Having non-zero Limit*s causes performance problems due to accounting overhead # in the kernel. We recommend using cgroups to do container-local accounting.
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
# Uncomment TasksMax if your systemd version supports it. # Only systemd 226 and above support this version. #TasksMax=infinity
TimeoutStartSec=0
# set delegate yes so that systemd does not reset the cgroups of docker containers
Delegate=yes
# kill only the docker process, not all processes in the cgroup
KillMode=process
# restart the docker process if it exits prematurely
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s

[Install]
WantedBy=multi-user.target

将配置复制到另外两个阶段

scp /usr/lib/systemd/system/docker.service 192.168.56.12:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/docker.service 192.168.56.13:/usr/lib/systemd/system/

重启Docker

[root@linux-node1 ~]# systemctl daemon-reload
[root@linux-node1 ~]# systemctl restart docker 

8.应用创建

1.创建一个测试用的deployment

[root@linux-node1 ~]# kubectl run net-test --image=alpine --replicas=2 sleep 360000 2.查看获取IP情况

[root@linux-node1 ~]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
net-test-74f45db489-gmgv8 1/1 Running 0 1m 10.2.83.2 192.168.56.13
net-test-74f45db489-pr5jc 1/1 Running 0 1m 10.2.59.2 192.168.56.12 3.测试联通性(在对应的node节点去测试)

ping 10.2.83.2
本文转自SegmentFault- Kubernetes集群的详细部署
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
6天前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
3月前
|
Kubernetes 持续交付 Docker
利用 Docker 和 Kubernetes 实现微服务部署
【10月更文挑战第2天】利用 Docker 和 Kubernetes 实现微服务部署
|
16天前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
67 12
|
19天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
24天前
|
存储 Kubernetes 容器
K8S部署nexus
该配置文件定义了Nexus 3的Kubernetes部署,包括PersistentVolumeClaim、Deployment和服务。PVC请求20Gi存储,使用NFS存储类。Deployment配置了一个Nexus 3容器,内存限制为6G,CPU为1000m,并挂载数据卷。Service类型为NodePort,通过30520端口对外提供服务。所有资源位于`nexus`命名空间中。
|
21天前
|
Kubernetes 网络协议 应用服务中间件
Kubernetes Ingress:灵活的集群外部网络访问的利器
《Kubernetes Ingress:集群外部访问的利器-打造灵活的集群网络》介绍了如何通过Ingress实现Kubernetes集群的外部访问。前提条件是已拥有Kubernetes集群并安装了kubectl工具。文章详细讲解了Ingress的基本组成(Ingress Controller和资源对象),选择合适的版本,以及具体的安装步骤,如下载配置文件、部署Nginx Ingress Controller等。此外,还提供了常见问题的解决方案,例如镜像下载失败的应对措施。最后,通过部署示例应用展示了Ingress的实际使用方法。
45 2
|
1月前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
3月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
159 60
|
3月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
286 62
|
2月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。