本篇延续过往手动安装方式来部署 Kubernetes v1.10.x 版本的 High Availability 集群,主要目的是学习 Kubernetes 安装的一些元件关析与流程。若不想这么累的话,可以参考 Picking the Right Solution 来选择自己最喜欢的方式。
本次安装的软件版本:
- Kubernetes v1.10.0
- CNI v0.6.0
- Etcd v3.1.13
- Calico v3.0.4
- Docker CE latest version
节点信息
本教学将以下列节点数与规格来进行部署 Kubernetes 集群,操作系统可采用Ubuntu 16.x与CentOS 7.x:
IP Address | Hostname | CPU | Memory |
---|---|---|---|
192.16.35.11 | k8s-m1 | 1 | 4G |
192.16.35.12 | k8s-m2 | 1 | 4G |
192.16.35.13 | k8s-m3 | 1 | 4G |
192.16.35.14 | k8s-n1 | 1 | 4G |
192.16.35.15 | k8s-n2 | 1 | 4G |
192.16.35.16 | k8s-n2 | 1 | 4G |
另外由所有 master 节点提供一组 VIP 192.16.35.10。
- 这边m为主要控制节点,n为应用程序工作节点。
- 所有操作全部用root使用者进行(方便用),以 SRE 来说不推荐。
- 可以下载Vagrantfile 来建立 Virtualbox 虚拟机集群。不过需要注意机器资源是否足够。
事前准备
开始安装前需要确保以下条件已达成:
- 所有节点彼此网络互通,并且k8s-m1SSH 登入其他节点为 passwdless。
- 所有防火墙与 SELinux 已关闭。如 CentOS:
$ systemctl stop firewalld && systemctl disable firewalld $ setenforce 0 $ vim /etc/selinux/config SELINUX=disabled
- 所有节点需要设定/etc/hosts解析到所有集群主机。
... 192.16.35.11 k8s-m1 192.16.35.12 k8s-m2 192.16.35.13 k8s-m3 192.16.35.14 k8s-n1 192.16.35.15 k8s-n2 192.16.35.16 k8s-n3
- 所有节点需要安装 Docker CE 版本的容器引擎:
$ curl -fsSL "https://get.docker.com/" | sh
不管是在 Ubuntu 或 CentOS 都只需要执行该指令就会自动安装最新版 Docker。
CentOS 安装完成后,需要再执行以下指令:
$ systemctl enable docker && systemctl start docker
所有节点需要设定/etc/sysctl.d/k8s.conf的系统参数。
$ cat <<EOF > /etc/sysctl.d/k8s.conf net.ipv4.ip_forward = 1 net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 EOF $ sysctl -p /etc/sysctl.d/k8s.conf
- Kubernetes v1.8+ 要求关闭系统 Swap,若不关闭则需要修改 kubelet 设定参数,在所有节点利用以下指令关闭:
$ swapoff -a && sysctl -w vm.swappiness=0
记得/etc/fstab也要注解掉SWAP挂载。
- 在所有节点下载 Kubernetes 二进制执行档:
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/amd64" $ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet $ chmod +x /usr/local/bin/kubelet # node 请忽略下载 kubectl $ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl $ chmod +x /usr/local/bin/kubectl
- 在所有节点下载 Kubernetes CNI 二进制文件:
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin $ export CNI_URL="https://github.com/containernetworking/plugins/releases/download" $ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
- 在k8s-m1需要安装CFSSL工具,这将会用来建立 TLS Certificates。
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2" $ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl $ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson $ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson
建立集群 CA keys 与 Certificates
在这个部分,将需要产生多个元件的 Certificates,这包含 Etcd、Kubernetes 元件等,并且每个集群都会有一个根数位凭证认证机构(Root Certificate Authority)被用在认证 API Server 与 Kubelet 端的凭证。
P.S. 这边要注意 CA JSON 档的CN(Common Name)与O(Organization)等内容是会影响 Kubernetes 元件认证的。
Etcd
首先在k8s-m1建立/etc/etcd/ssl资料夹,然后进入目录完成以下操作。
$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl $ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
下载ca-config.json与etcd-ca-csr.json文件,并从 CSR json 产生 CA keys 与 Certificate:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json" $ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca
下载etcd-csr.json文件,并产生 Etcd 证书:
$ wget "${PKI_URL}/etcd-csr.json" $ cfssl gencert \ -ca=etcd-ca.pem \ -ca-key=etcd-ca-key.pem \ -config=ca-config.json \ -hostname=127.0.0.1,192.16.35.11,192.16.35.12,192.16.35.13 \ -profile=kubernetes \ etcd-csr.json | cfssljson -bare etcd
-hostname需修改成所有 masters 节点。
完成后删除不必要文件:
$ rm -rf *.json *.csr
确认/etc/etcd/ssl有以下文件:
$ ls /etc/etcd/ssl etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem
复制相关文件至其他 Etcd 节点,这边为所有master节点:
$ for NODE in k8s-m2 k8s-m3; do echo "--- $NODE ---" ssh ${NODE} "mkdir -p /etc/etcd/ssl" for FILE in etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem; do scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE} done done
Kubernetes
在k8s-m1建立pki资料夹,然后进入目录完成以下章节操作。
$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki $ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki" $ export KUBE_APISERVER="https://192.16.35.10:6443"
下载ca-config.json与ca-csr.json文件,并产生 CA 金钥:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json" $ cfssl gencert -initca ca-csr.json | cfssljson -bare ca $ ls ca*.pem ca-key.pem ca.pem
API Server Certificate
下载apiserver-csr.json文件,并产生 kube-apiserver 凭证:
$ wget "${PKI_URL}/apiserver-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -hostname=10.96.0.1,192.16.35.10,127.0.0.1,kubernetes.default \ -profile=kubernetes \ apiserver-csr.json | cfssljson -bare apiserver $ ls apiserver*.pem apiserver-key.pem apiserver.pem
- 这边-hostname的96.0.1是 Cluster IP 的 Kubernetes 端点;
- 16.35.10为虚拟 IP 位址(VIP);
- default为 Kubernetes DN。
Front Proxy Certificate
下载front-proxy-ca-csr.json文件,并产生 Front Proxy CA 金钥,Front Proxy 主要是用在 API aggregator 上:
$ wget "${PKI_URL}/front-proxy-ca-csr.json" $ cfssl gencert \ -initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca $ ls front-proxy-ca*.pem front-proxy-ca-key.pem front-proxy-ca.pem
下载front-proxy-client-csr.json文件,并产生 front-proxy-client 证书:
$ wget "${PKI_URL}/front-proxy-client-csr.json" $ cfssl gencert \ -ca=front-proxy-ca.pem \ -ca-key=front-proxy-ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ front-proxy-client-csr.json | cfssljson -bare front-proxy-client $ ls front-proxy-client*.pem front-proxy-client-key.pem front-proxy-client.pem
Admin Certificate
下载admin-csr.json文件,并产生 admin certificate 凭证:
$ wget "${PKI_URL}/admin-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ admin-csr.json | cfssljson -bare admin $ ls admin*.pem admin-key.pem admin.pem
接着通过以下指令产生名称为 admin.conf 的 kubeconfig 档:
# admin set cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../admin.conf # admin set credentials $ kubectl config set-credentials kubernetes-admin \ --client-certificate=admin.pem \ --client-key=admin-key.pem \ --embed-certs=true \ --kubeconfig=../admin.conf # admin set context $ kubectl config set-context kubernetes-admin@kubernetes \ --cluster=kubernetes \ --user=kubernetes-admin \ --kubeconfig=../admin.conf # admin set default context $ kubectl config use-context kubernetes-admin@kubernetes \ --kubeconfig=../admin.conf
Controller Manager Certificate
下载manager-csr.json文件,并产生 kube-controller-manager certificate 凭证:
$ wget "${PKI_URL}/manager-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ manager-csr.json | cfssljson -bare controller-manager $ ls controller-manager*.pem controller-manager-key.pem controller-manager.pem
若节点 IP 不同,需要修改manager-csr.json的hosts。
接着通过以下指令产生名称为controller-manager.conf的 kubeconfig 档:
# controller-manager set cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../controller-manager.conf # controller-manager set credentials $ kubectl config set-credentials system:kube-controller-manager \ --client-certificate=controller-manager.pem \ --client-key=controller-manager-key.pem \ --embed-certs=true \ --kubeconfig=../controller-manager.conf # controller-manager set context $ kubectl config set-context system:kube-controller-manager@kubernetes \ --cluster=kubernetes \ --user=system:kube-controller-manager \ --kubeconfig=../controller-manager.conf # controller-manager set default context $ kubectl config use-context system:kube-controller-manager@kubernetes \ --kubeconfig=../controller-manager.conf
Scheduler Certificate
下载scheduler-csr.json文件,并产生 kube-scheduler certificate 凭证:
$ wget "${PKI_URL}/scheduler-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ scheduler-csr.json | cfssljson -bare scheduler $ ls scheduler*.pem scheduler-key.pem scheduler.pem
若节点 IP 不同,需要修改scheduler-csr.json的hosts。
接着通过以下指令产生名称为 scheduler.conf 的 kubeconfig 档:
# scheduler set cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../scheduler.conf # scheduler set credentials $ kubectl config set-credentials system:kube-scheduler \ --client-certificate=scheduler.pem \ --client-key=scheduler-key.pem \ --embed-certs=true \ --kubeconfig=../scheduler.conf # scheduler set context $ kubectl config set-context system:kube-scheduler@kubernetes \ --cluster=kubernetes \ --user=system:kube-scheduler \ --kubeconfig=../scheduler.conf # scheduler use default context $ kubectl config use-context system:kube-scheduler@kubernetes \ --kubeconfig=../scheduler.conf
Master Kubelet Certificate
接着在所有k8s-m1节点下载kubelet-csr.json文件,并产生凭证:
$ wget "${PKI_URL}/kubelet-csr.json" $ for NODE in k8s-m1 k8s-m2 k8s-m3; do echo "--- $NODE ---" cp kubelet-csr.json kubelet-$NODE-csr.json; sed -i "s/\$NODE/$NODE/g" kubelet-$NODE-csr.json; cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -hostname=$NODE \ -profile=kubernetes \ kubelet-$NODE-csr.json | cfssljson -bare kubelet-$NODE done $ ls kubelet*.pem kubelet-k8s-m1-key.pem kubelet-k8s-m1.pem kubelet-k8s-m2-key.pem kubelet-k8s-m2.pem kubelet-k8s-m3-key.pem kubelet-k8s-m3.pem
这边需要依据节点修改-hostname与$NODE。
完成后复制 kubelet 凭证至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do echo "--- $NODE ---" ssh ${NODE} "mkdir -p /etc/kubernetes/pki" for FILE in kubelet-$NODE-key.pem kubelet-$NODE.pem ca.pem; do scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE} done done
接着执行以下指令产生名称为kubelet.conf的 kubeconfig 档:
$ for NODE in k8s-m1 k8s-m2 k8s-m3; do echo "--- $NODE ---" ssh ${NODE} "cd /etc/kubernetes/pki && \ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../kubelet.conf && \ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../kubelet.conf && \ kubectl config set-credentials system:node:${NODE} \ --client-certificate=kubelet-${NODE}.pem \ --client-key=kubelet-${NODE}-key.pem \ --embed-certs=true \ --kubeconfig=../kubelet.conf && \ kubectl config set-context system:node:${NODE}@kubernetes \ --cluster=kubernetes \ --user=system:node:${NODE} \ --kubeconfig=../kubelet.conf && \ kubectl config use-context system:node:${NODE}@kubernetes \ --kubeconfig=../kubelet.conf && \ rm kubelet-${NODE}.pem kubelet-${NODE}-key.pem" done
Service Account Key
Service account 不是通过 CA 进行认证,因此不要通过 CA 来做 Service account key 的检查,这边建立一组 Private 与 Public 金钥提供给 Service account key 使用:
$ openssl genrsa -out sa.key 2048 $ openssl rsa -in sa.key -pubout -out sa.pub $ ls sa.* sa.key sa.pub
删除不必要文件
所有信息准备完成后,就可以将一些不必要文件删除:
$ rm -rf *.json *.csr scheduler*.pem controller-manager*.pem admin*.pem kubelet*.pem
复制文件至其他节点
复制凭证文件至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do echo "--- $NODE ---" for FILE in $(ls /etc/kubernetes/pki/); do scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE} done done
复制 Kubernetes config 文件至其他master节点:
$ for NODE in k8s-m2 k8s-m3; do echo "--- $NODE ---" for FILE in admin.conf controller-manager.conf scheduler.conf; do scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE} done done
Kubernetes Masters
本部分将说明如何建立与设定 Kubernetes Master 角色,过程中会部署以下元件:
- kube-apiserver:提供 REST APIs,包含授权、认证与状态储存等。
- kube-controller-manager:负责维护集群的状态,如自动扩展,滚动更新等。
- kube-scheduler:负责资源排程,依据预定的排程策略将 Pod 分配到对应节点上。
- Etcd:储存集群所有状态的 Key/Value 储存系统。
- HAProxy:提供负载平衡器。
- Keepalived:提供虚拟网络位址(VIP)。
部署与设定
首先在所有 master 节点下载部署元件的 YAML 文件,这边不采用二进制执行档与 Systemd 来管理这些元件,全部采用 Static Pod 来达成。这边将文件下载至/etc/kubernetes/manifests目录:
$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/master" $ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests $ for FILE in kube-apiserver kube-controller-manager kube-scheduler haproxy keepalived etcd etcd.config; do wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml if [ ${FILE} == "etcd.config" ]; then mv etcd.config.yml /etc/etcd/etcd.config.yml sed -i "s/\${HOSTNAME}/${HOSTNAME}/g" /etc/etcd/etcd.config.yml sed -i "s/\${PUBLIC_IP}/$(hostname -i)/g" /etc/etcd/etcd.config.yml fi done $ ls /etc/kubernetes/manifests etcd.yml haproxy.yml keepalived.yml kube-apiserver.yml kube-controller-manager.yml kube-scheduler.yml
- 若IP与教学设定不同的话,请记得修改 YAML 文件。
- kube-apiserver 中的NodeRestriction 请参考 Using Node Authorization。
产生一个用来加密 Etcd 的 Key:
$ head -c 32 /dev/urandom | base64SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
注意每台master节点需要用一样的 Key。
在/etc/kubernetes/目录下,建立encryption.yml的加密 YAML 文件:
$ cat <<EOF > /etc/kubernetes/encryption.yml kind: EncryptionConfig apiVersion: v1 resources: - resources: - secrets providers: - aescbc: keys: - name: key1 secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ= - identity: {} EOF
Etcd 资料加密可参考这篇 Encrypting data at rest。
在/etc/kubernetes/目录下,建立audit-policy.yml的进阶稽核策略 YAML 档:
$ cat <<EOF > /etc/kubernetes/audit-policy.yml apiVersion: audit.k8s.io/v1beta1 kind: Policy rules:- level: Metadata EOF
Audit Policy 请参考这篇 Auditing。
下载haproxy.cfg文件来提供给 HAProxy 容器使用:
$ mkdir -p /etc/haproxy/ $ wget "${CORE_URL}/haproxy.cfg" -O /etc/haproxy/haproxy.cfg
若与本教学 IP 不同的话,请记得修改设定档。
下载kubelet.service相关文件来管理 kubelet:
$ mkdir -p /etc/systemd/system/kubelet.service.d $ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service $ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若 cluster dns或domain有改变的话,需要修改10-kubelet.conf。
最后建立 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes /var/lib/etcd $ systemctl enable kubelet.service && systemctl start kubelet.service
完成后会需要一段时间来下载镜像档与启动元件,可以利用该指令来监看:
$ watch netstat -ntlpActive Internet connections (only servers)Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 10344/kubelet tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 11324/kube-schedule tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 11416/haproxy tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 11235/kube-controll tcp 0 0 0.0.0.0:9090 0.0.0.0:* LISTEN 11416/haproxy tcp6 0 0 :::2379 :::* LISTEN 10479/etcd tcp6 0 0 :::2380 :::* LISTEN 10479/etcd tcp6 0 0 :::10255 :::* LISTEN 10344/kubelet tcp6 0 0 :::5443 :::* LISTEN 11295/kube-apiserve
若看到以上信息表示服务正常启动,若发生问题可以用docker指令来查看。
验证集群
完成后,在任意一台master节点复制 admin kubeconfig 文件,并通过简单指令验证:
$ cp /etc/kubernetes/admin.conf ~/.kube/config $ kubectl get cs NAME STATUS MESSAGE ERROR controller-manager Healthy ok scheduler Healthy ok etcd-2 Healthy {"health": "true"} etcd-1 Healthy {"health": "true"} etcd-0 Healthy {"health": "true"} $ kubectl get node NAME STATUS ROLES AGE VERSION k8s-m1 NotReady master 52s v1.10.0 k8s-m2 NotReady master 51s v1.10.0 k8s-m3 NotReady master 50s v1.10.0 $ kubectl -n kube-system get po NAME READY STATUS RESTARTS AGE etcd-k8s-m1 1/1 Running 0 7s etcd-k8s-m2 1/1 Running 0 57s haproxy-k8s-m3 1/1 Running 0 1m...
接着确认服务能够执行 logs 等指令:
$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-scheduler-k8s-m2)
这边会发现出现 403 Forbidden 问题,这是因为 kube-apiserver user 并没有 nodes 的资源存取权限,属于正常。
由于上述权限问题,必需建立一个apiserver-to-kubelet-rbac.yml来定义权限,以供对 Nodes 容器执行 logs、exec 等指令。在任意一台master节点执行以下指令:
$ kubectl apply -f "${CORE_URL}/apiserver-to-kubelet-rbac.yml.conf" clusterrole.rbac.authorization.k8s.io "system:kube-apiserver-to-kubelet" configured clusterrolebinding.rbac.authorization.k8s.io "system:kube-apiserver" configured # 测试 logs $ kubectl -n kube-system logs -f kube-scheduler-k8s-m2... I0403 02:30:36.375935 1 server.go:555] Version: v1.10.0 I0403 02:30:36.378208 1 server.go:574] starting healthz server on 127.0.0.1:10251 设定master节点允许 Taint: $ kubectl taint nodes node-role.kubernetes.io/master="":NoSchedule --all node "k8s-m1" tainted node "k8s-m2" tainted node "k8s-m3" tainted
建立 TLS Bootstrapping RBAC 与 Secret
由于本次安装启用了 TLS 认证,因此每个节点的 kubelet 都必须使用 kube-apiserver 的 CA 的凭证后,才能与 kube-apiserver 进行沟通,而该过程需要手动针对每台节点单独签署凭证是一件繁琐的事情,且一旦节点增加会延伸出管理不易问题; 而 TLS bootstrapping 目标就是解决该问题,通过让 kubelet 先使用一个预定低权限使用者连接到 kube-apiserver,然后在对 kube-apiserver 申请凭证签署,当授权 Token 一致时,Node 节点的 kubelet 凭证将由 kube-apiserver 动态签署提供。具体作法可以参考 TLS Bootstrapping 与 Authenticating with Bootstrap Tokens。
首先在k8s-m1建立一个变量来产生BOOTSTRAP_TOKEN,并建立bootstrap-kubelet.conf的 Kubernetes config 档:
$ cd /etc/kubernetes/pki $ export TOKEN_ID=$(openssl rand 3 -hex) $ export TOKEN_SECRET=$(openssl rand 8 -hex) $ export BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET} $ export KUBE_APISERVER="https://192.16.35.10:6443" # bootstrap set cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../bootstrap-kubelet.conf # bootstrap set credentials $ kubectl config set-credentials tls-bootstrap-token-user \ --token=${BOOTSTRAP_TOKEN} \ --kubeconfig=../bootstrap-kubelet.conf # bootstrap set context $ kubectl config set-context tls-bootstrap-token-user@kubernetes \ --cluster=kubernetes \ --user=tls-bootstrap-token-user \ --kubeconfig=../bootstrap-kubelet.conf # bootstrap use default context $ kubectl config use-context tls-bootstrap-token-user@kubernetes \ --kubeconfig=../bootstrap-kubelet.conf
若想要用手动签署凭证来进行授权的话,可以参考 Certificate。
接着在k8s-m1建立 TLS bootstrap secret 来提供自动签证使用:
$ cat <<EOF | kubectl create -f - apiVersion: v1 kind: Secret metadata: name: bootstrap-token-${TOKEN_ID} namespace: kube-system type: bootstrap.kubernetes.io/token stringData: token-id: ${TOKEN_ID} token-secret: ${TOKEN_SECRET} usage-bootstrap-authentication: "true" usage-bootstrap-signing: "true" auth-extra-groups: system:bootstrappers:default-node-token EOF secret "bootstrap-token-65a3a9" created 在k8s-m1建立 TLS Bootstrap Autoapprove RBAC: $ kubectl apply -f "${CORE_URL}/kubelet-bootstrap-rbac.yml.conf" clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-bootstrap" created clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-certificate-rotation" created
Kubernetes Nodes
本部分将说明如何建立与设定 Kubernetes Node 角色,Node 是主要执行容器实例(Pod)的工作节点。
在开始部署前,先在k8-m1将需要用到的文件复制到所有node节点上:
$ cd /etc/kubernetes/pki $ for NODE in k8s-n1 k8s-n2 k8s-n3; do echo "--- $NODE ---" ssh ${NODE} "mkdir -p /etc/kubernetes/pki/" ssh ${NODE} "mkdir -p /etc/etcd/ssl" # Etcd for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE} done # Kubernetes for FILE in pki/ca.pem pki/ca-key.pem bootstrap-kubelet.conf; do scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE} done done
部署与设定
在每台node节点下载kubelet.service相关文件来管理 kubelet:
$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/node" $ mkdir -p /etc/systemd/system/kubelet.service.d $ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service $ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若 cluster dns或domain有改变的话,需要修改10-kubelet.conf。
最后建立 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes $ systemctl enable kubelet.service && systemctl start kubelet.service
验证集群
完成后,在任意一台master节点并通过简单指令验证:
$ kubectl get csr NAME AGE REQUESTOR CONDITION csr-bvz9l 11m system:node:k8s-m1 Approved,Issued csr-jwr8k 11m system:node:k8s-m2 Approved,Issued csr-q867w 11m system:node:k8s-m3 Approved,Issued node-csr-Y-FGvxZWJqI-8RIK_IrpgdsvjGQVGW0E4UJOuaU8ogk 17s system:bootstrap:dca3e1 Approved,Issued node-csr-cnX9T1xp1LdxVDc9QW43W0pYkhEigjwgceRshKuI82c 19s system:bootstrap:dca3e1 Approved,Issued node-csr-m7SBA9RAGCnsgYWJB-u2HoB2qLSfiQZeAxWFI2WYN7Y 18s system:bootstrap:dca3e1 Approved,Issued $ kubectl get nodes NAME STATUS ROLES AGE VERSION k8s-m1 NotReady master 12m v1.10.0 k8s-m2 NotReady master 11m v1.10.0 k8s-m3 NotReady master 11m v1.10.0 k8s-n1 NotReady node 32s v1.10.0 k8s-n2 NotReady node 31s v1.10.0 k8s-n3 NotReady node 29s v1.10.0
Kubernetes Core Addons 部署
当完成上面所有步骤后,接着需要部署一些插件,其中如Kubernetes DNS与Kubernetes Proxy等这种 Addons 是非常重要的。
Kubernetes Proxy
Kube-proxy 是实现 Service 的关键插件,kube-proxy 会在每台节点上执行,然后监听 API Server 的 Service 与 Endpoint 资源物件的改变,然后来依据变化执行 iptables 来实现网络的转发。这边我们会需要建议一个 DaemonSet 来执行,并且建立一些需要的 Certificates。
在k8s-m1下载kube-proxy.yml来建立 Kubernetes Proxy Addon:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-proxy.yml.conf" serviceaccount "kube-proxy" created clusterrolebinding.rbac.authorization.k8s.io "system:kube-proxy" created configmap "kube-proxy" created daemonset.apps "kube-proxy" created $ kubectl -n kube-system get po -o wide -l k8s-app=kube-proxy NAME READY STATUS RESTARTS AGE IP NODE kube-proxy-8j5w8 1/1 Running 0 29s 192.16.35.16 k8s-n3 kube-proxy-c4zvt 1/1 Running 0 29s 192.16.35.11 k8s-m1 kube-proxy-clpl6 1/1 Running 0 29s 192.16.35.12 k8s-m2...
Kubernetes DNS
Kube DNS 是 Kubernetes 集群内部 Pod 之间互相沟通的重要 Addon,它允许 Pod 可以通过 Domain Name 方式来连接 Service,其主要由 Kube DNS 与 Sky DNS 组合而成,通过 Kube DNS 监听 Service 与 Endpoint 变化,来提供给 Sky DNS 信息,已更新解析位址。
在k8s-m1下载kube-proxy.yml来建立 Kubernetes Proxy Addon:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-dns.yml.conf" serviceaccount "kube-dns" created service "kube-dns" created deployment.extensions "kube-dns" created $ kubectl -n kube-system get po -l k8s-app=kube-dns NAME READY STATUS RESTARTS AGE kube-dns-654684d656-zq5t8 0/3 Pending 0 1m
这边会发现处于Pending状态,是由于 Kubernetes Pod Network 还未建立完成,因此所有节点会处于NotReady状态,而造成 Pod 无法被排程分配到指定节点上启动,由于为了解决该问题,下节将说明如何建立 Pod Network。
Calico Network 安装与设定
Calico 是一款纯 Layer 3 的资料中心网络方案(不需要 Overlay 网络),Calico 好处是它整合了各种云原生平台,且 Calico 在每一个节点利用 Linux Kernel 实现高效的 vRouter 来负责资料的转发,而当资料中心复杂度增加时,可以用 BGP route reflector 来达成。
本次不采用手动方式来建立 Calico 网络,若想了解可以参考 Integration Guide。
在k8s-m1下载calico.yaml来建立 Calico Network:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/network/calico.yml.conf" configmap "calico-config" created daemonset "calico-node" created deployment "calico-kube-controllers" created clusterrolebinding "calico-cni-plugin" created clusterrole "calico-cni-plugin" created serviceaccount "calico-cni-plugin" created clusterrolebinding "calico-kube-controllers" created clusterrole "calico-kube-controllers" created serviceaccount "calico-kube-controllers" created $ kubectl -n kube-system get po -l k8s-app=calico-node -o wide NAME READY STATUS RESTARTS AGE IP NODE calico-node-22mbb 2/2 Running 0 1m 192.16.35.12 k8s-m2 calico-node-2qwf5 2/2 Running 0 1m 192.16.35.11 k8s-m1 calico-node-g2sp8 2/2 Running 0 1m 192.16.35.13 k8s-m3 calico-node-hghp4 2/2 Running 0 1m 192.16.35.14 k8s-n1 calico-node-qp6gf 2/2 Running 0 1m 192.16.35.15 k8s-n2 calico-node-zfx4n 2/2 Running 0 1m 192.16.35.16 k8s-n3
这边若节点 IP 与网卡不同的话,请修改calico.yml文件。
在k8s-m1下载 Calico CLI 来查看 Calico nodes:
$ wget https://github.com/projectcalico/calicoctl/releases/download/v3.1.0/calicoctl -O /usr/local/bin/calicoctl $ chmod u+x /usr/local/bin/calicoctl $ cat <<EOF > ~/calico-rcexport ETCD_ENDPOINTS="https://192.16.35.11:2379,https://192.16.35.12:2379,https://192.16.35.13:2379"export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem" EOF $ . ~/calico-rc $ calicoctl node statusCalico process is running. IPv4 BGP status+--------------+-------------------+-------+----------+-------------+| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |+--------------+-------------------+-------+----------+-------------+| 192.16.35.12 | node-to-node mesh | up | 04:42:37 | Established || 192.16.35.13 | node-to-node mesh | up | 04:42:42 | Established || 192.16.35.14 | node-to-node mesh | up | 04:42:37 | Established || 192.16.35.15 | node-to-node mesh | up | 04:42:41 | Established || 192.16.35.16 | node-to-node mesh | up | 04:42:36 | Established |+--------------+-------------------+-------+----------+-------------+... 查看 pending 的 pod 是否已执行: $ kubectl -n kube-system get po -l k8s-app=kube-dns kubectl -n kube-system get po -l k8s-app=kube-dns NAME READY STATUS RESTARTS AGE kube-dns-654684d656-j8xzx 3/3 Running 0 10m
Kubernetes Extra Addons 部署
本节说明如何部署一些官方常用的 Addons,如 Dashboard、Heapster 等。
Dashboard
Dashboard 是 Kubernetes 社区官方开发的仪表板,有了仪表板后管理者就能够通过 Web-based 方式来管理 Kubernetes 集群,除了提升管理方便,也让资源视觉化,让人更直觉看见系统信息的呈现结果。
在k8s-m1通过 kubectl 来建立 kubernetes dashboard 即可:
$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml $ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard NAME READY STATUS RESTARTS AGE kubernetes-dashboard-7d5dcdb6d9-j492l 1/1 Running 0 12s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes-dashboard ClusterIP 10.111.22.111 <none> 443/TCP 12s
这边会额外建立一个名称为open-api Cluster Role Binding,这仅作为方便测试时使用,在一般情况下不要开启,不然就会直接被存取所有 API:
$ cat <<EOF | kubectl create -f - apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: open-api namespace: "" roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - apiGroup: rbac.authorization.k8s.io kind: User name: system:anonymous EOF
注意!管理者可以针对特定使用者来开放 API 存取权限,但这边方便使用直接绑在 cluster-admin cluster role。
完成后,就可以通过浏览器存取 Dashboard。
在 1.7 版本以后的 Dashboard 将不再提供所有权限,因此需要建立一个 service account 来绑定 cluster-admin role:
$ kubectl -n kube-system create sa dashboard $ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard $ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}') $ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}' eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw
复制token,然后贴到 Kubernetes dashboard。注意这边一般来说要针对不同 User 开启特定存取权限。
Heapster
Heapster 是 Kubernetes 社区维护的容器集群监控与效能分析工具。Heapster 会从 Kubernetes apiserver 取得所有 Node 信息,然后再通过这些 Node 来取得 kubelet 上的资料,最后再将所有收集到资料送到 Heapster 的后台储存 InfluxDB,最后利用 Grafana 来抓取 InfluxDB 的资料源来进行视觉化。
在k8s-m1通过 kubectl 来建立 kubernetes monitor 即可:
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-monitor.yml.conf" $ kubectl -n kube-system get po,svc NAME READY STATUS RESTARTS AGE... po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE... svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m···
完成后,就可以通过浏览器存取 Grafana Dashboard。
Ingress Controller
Ingress是利用 Nginx 或 HAProxy 等负载平衡器来曝露集群内服务的元件,Ingress 主要通过设定 Ingress 规格来定义 Domain Name 映射 Kubernetes 内部 Service,这种方式可以避免掉使用过多的 NodePort 问题。
在k8s-m1通过 kubectl 来建立 Ingress Controller 即可:
$ kubectl create ns ingress-nginx $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/ingress-controller.yml.conf" $ kubectl -n ingress-nginx get po NAME READY STATUS RESTARTS AGEdefault-http-backend-5c6d95c48-rzxfb 1/1 Running 0 7m nginx-ingress-controller-699cdf846-982n4 1/1 Running 0 7m
这里也可以选择 Traefik 的 Ingress Controller。
测试 Ingress 功能
这边先建立一个 Nginx HTTP server Deployment 与 Service:
$ kubectl run nginx-dp --image nginx --port 80 $ kubectl expose deploy nginx-dp --port 80 $ kubectl get po,svc $ cat <<EOF | kubectl create -f - apiVersion: extensions/v1beta1 kind: Ingress metadata: name: test-nginx-ingress annotations: ingress.kubernetes.io/rewrite-target: / spec: rules: - host: test.nginx.com http: paths: - path: / backend: serviceName: nginx-dp servicePort: 80 EOF
通过 curl 来进行测试:
$ curl 192.16.35.10 -H 'Host: test.nginx.com'<!DOCTYPE html><html><head><title>Welcome to nginx!</title>...
# 测试其他 domain name 是否会回传 404
$ curl 192.16.35.10 -H 'Host: test.nginx.com1'default backend - 404
Helm Tiller Server
Helm 是 Kubernetes Chart 的管理工具,Kubernetes Chart 是一套预先组态的 Kubernetes 资源套件。其中Tiller Server主要负责接收来至 Client 的指令,并通过 kube-apiserver 与 Kubernetes 集群做沟通,根据 Chart 定义的内容,来产生与管理各种对应 API 物件的 Kubernetes 部署文档(又称为 Release)。
首先在k8s-m1安装 Helm tool:
$ wget -qO- https://kubernetes-helm.storage.googleapis.com/helm-v2.8.1-linux-amd64.tar.gz | tar -zx $ sudo mv linux-amd64/helm /usr/local/bin/
另外在所有node节点安装 socat:
$ sudo apt-get install -y socat
接着初始化 Helm(这边会安装 Tiller Server):
$ kubectl -n kube-system create sa tiller $ kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller $ helm init --service-account tiller...Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.Happy Helming! $ kubectl -n kube-system get po -l app=helm NAME READY STATUS RESTARTS AGE tiller-deploy-5f789bd9f7-tzss6 1/1 Running 0 29s $ helm versionClient: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}Server: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}
测试 Helm 功能
这边部署简单 Jenkins 来进行功能测试:
$ helm install --name demo --set Persistence.Enabled=false stable/jenkins $ kubectl get po,svc -l app=demo-jenkins NAME READY STATUS RESTARTS AGE demo-jenkins-7bf4bfcff-q74nt 1/1 Running 0 2m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE demo-jenkins LoadBalancer 10.103.15.129 <pending> 8080:31161/TCP 2m demo-jenkins-agent ClusterIP 10.103.160.126 <none> 50000/TCP 2m
# 取得 admin 账号的密码
$ printf $(kubectl get secret --namespace default demo-jenkins -o jsonpath="{.data.jenkins-admin-password}" | base64 --decode);echo r6y9FMuF2u
完成后,就可以通过浏览器存取 Jenkins Web。
测试完成后,即可删除:
$ helm ls NAME REVISION UPDATED STATUS CHART NAMESPACE demo 1 Tue Apr 10 07:29:51 2018 DEPLOYED jenkins-0.14.4 default $ helm delete demo --purge release "demo" deleted
更多 Helm Apps 可以到 Kubeapps Hub 寻找。
测试集群
SSH 进入k8s-m1节点,然后关闭该节点:
$ sudo poweroff
接着进入到k8s-m2节点,通过 kubectl 来检查集群是否能够正常执行:
# 先检查 etcd 状态,可以发现 etcd-0 因为关机而中断 $ kubectl get cs NAME STATUS MESSAGE ERROR scheduler Healthy ok controller-manager Healthy ok etcd-1 Healthy {"health": "true"} etcd-2 Healthy {"health": "true"} etcd-0 Unhealthy Get https://192.16.35.11:2379/health: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers) # 测试是否可以建立 Pod $ kubectl run nginx --image nginx --restart=Never --port 80 $ kubectl get po NAME READY STATUS RESTARTS AGE nginx 1/1 Running 0 22s本文转自kubernetes中文社区- Kubernetes v1.10.x HA 全手动安装教程(TL;DR)