Kubernetes HPA Controller工作原理

简介: HPA Controller 介绍 关于Kubernetes Horizontal Pod Autoscaler(简称HPA)的概念和使用介绍,请参考以下官方文档链接,在这里我不再赘述。 https://kubernetes.

HPA Controller 介绍


关于Kubernetes Horizontal Pod Autoscaler(简称HPA)的概念和使用介绍,请参考以下官方文档链接,在这里我不再赘述。


HPA Controller 工作原理

  • K8s通过HPA,基于获取到的metrics(CPU utilization, custom metrics) value,对rc, deployment管理的pods进行自动伸缩。

截止到Kubernetes 1.6,Release特性中仅支持CPU utilization这一resource metrics,对custom metrics的支持目前仍在alpha阶段,请知晓。

  • HPA Controller周期性(默认每30s一次,可通过kube-controller-manager的flag--horizontal-pod-autoscaler-sync-period进行设置)的调整对应的rc, deployment中的replicas数量,使得指定的metrics value能匹配用户指定的target utilization value。

  • 在每个HPA Controller的处理周期中,kube-controller-manager都去查询HPA中定义的metrics的utilization。查询方式根据metric类型不同而不同:

    • 如果metric type是resource metrics,则通过resource metrics API查询。
    • 如果metric type属于custom metrics,则通过custom metrics API查询。
  • 计算伸缩比例算法:

    • 对于resource metrics,比如CPU,HPA Controller获取HPA中指定的metrics,如果HPA中设定了target utilization,则HPA Controller会将获取到的metrics除于对应的容器的resource request值作为监测到的当前pod的resource utilization。如此计算完所有HPA对应的pods后,对该resource utilization values取平均值。最后将平均值除于定义的target utilization,得到伸缩的比例。

      注意:如果HPA对应的某些pods中的容器没有定义对应的resource request,则HPA不会对这些pods进行scale。

    • 对于custome metrics,HPA Controller的伸缩算法几乎与resource metrics一样,不同的是:此时是根据custome metrics API查询到的metrics value对比target metics value计算得到的,而不是通过utilization计算得到的。

  • HPA与rc, deployment, pod的关系如下图所示。

    • HPA通过Scale sub-resource接口,对RC和Deployment的replicas进行控制。
    • HPA最终对Pod副本数的控制终归还是通过RC和Deployment控制器。

HPA Controller有两种方式获取metrics:

  • direct Heapster access: 用于对resource metrics的监控,需要提前在kube-system namespace中部署Heapster。
  • REST client access: 用于对custom metrics的监控,需要设置kube-controller-manager的--horizontal-pod-autoscaler-use-rest-clients flag为true。


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
27天前
|
Prometheus Kubernetes 监控
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
|
2月前
|
Prometheus Kubernetes 监控
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
133 1
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
|
2月前
|
Kubernetes 负载均衡 应用服务中间件
k8s学习--ingress详细解释与应用(nginx ingress controller))
k8s学习--ingress详细解释与应用(nginx ingress controller))
358 0
|
4月前
|
Kubernetes 容器 Perl
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
|
4月前
|
存储 Kubernetes 安全
在K8S中,你用的flannel是哪个工作模式及fannel的底层原理如何实现数据报文转发的?
在K8S中,你用的flannel是哪个工作模式及fannel的底层原理如何实现数据报文转发的?
|
4月前
|
Kubernetes 监控 Perl
在K8S中,hpa原理是什么?
在K8S中,hpa原理是什么?
|
4月前
|
Kubernetes 负载均衡 API
在K8S中,api-service 和 kube-schedule 高可用原理是什么?
在K8S中,api-service 和 kube-schedule 高可用原理是什么?
|
4月前
|
Kubernetes 网络虚拟化 容器
在K8S中,cailico的ipip模型和ciliume的vxlan模型除了在具体的实现不同,在原理上有何区别?
在K8S中,cailico的ipip模型和ciliume的vxlan模型除了在具体的实现不同,在原理上有何区别?
|
4月前
|
Kubernetes 监控 API
在K8S中,如何使用HPA实现自动扩缩容?
在K8S中,如何使用HPA实现自动扩缩容?
|
11天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
下一篇
DataWorks